
www.manaraa.com

Western University
Scholarship@Western

Electronic Thesis and Dissertation Repository

December 2013

Redesign of Johar: a framework for developing
accessible applications
Oladapo Oyebode
The University of Western Ontario

Supervisor
Dr. Jamie Andrews
The University of Western Ontario

Graduate Program in Computer Science

A thesis submitted in partial fulfillment of the requirements for the degree in Master of Science

© Oladapo Oyebode 2013

Follow this and additional works at: https://ir.lib.uwo.ca/etd

Part of the Graphics and Human Computer Interfaces Commons, and the Software Engineering
Commons

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis
and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact tadam@uwo.ca.

Recommended Citation
Oyebode, Oladapo, "Redesign of Johar: a framework for developing accessible applications" (2013). Electronic Thesis and Dissertation
Repository. 1761.
https://ir.lib.uwo.ca/etd/1761

https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Fetd%2F1761&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F1761&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F1761&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=ir.lib.uwo.ca%2Fetd%2F1761&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ir.lib.uwo.ca%2Fetd%2F1761&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ir.lib.uwo.ca%2Fetd%2F1761&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/1761?utm_source=ir.lib.uwo.ca%2Fetd%2F1761&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:tadam@uwo.ca

www.manaraa.com

REDESIGN OF JOHAR: A FRAMEWORK FOR DEVELOPING
ACCESSIBLE APPLICATIONS

(Thesis format: Monograph)

by

Oladapo Oyebode

Graduate Program in Computer Science

A thesis submitted in partial fulfillment
of the requirements for the degree of

Masters of Science

The School of Graduate and Postdoctoral Studies
The University of Western Ontario

London, Ontario, Canada

c© Oladapo Oyebode 2013

www.manaraa.com

Abstract

As the population of disabled people continues to grow, designing accessible applications is
still a challenge, since most applications are incompatible with assistive technologies used by
disabled people to interact with the computer. This accessibility issue is usually caused by
the reluctance of software engineers or developers to include complete accessibility features in
their applications, which in turn is often due to the extra cost and development effort required to
dynamically adapt applications to a wide range of disabilities. Our aim to resolve accessibility
issues led to the design and implementation of the “Johar” framework, which facilitates the
development of applications accessible to both disabled and non-disabled users. In the Johar
architectural model, the ability-based front-end user interfaces are called interface interpreters,
while the application-specific logic or functionality implemented by application developers are
called applications or apps. The seamless interaction between each interface interpreter and
app is made possible by Johar.

In this thesis, we assure the quality of Johar by detecting and resolving many
inconsistencies, omissions, irrelevancies, and other anomalies that can trigger unexpected or
abnormal behaviour in Johar, and/or alter the smooth operation of interface interpreters and
apps. Our approach to conducting the quality assurance involved reviewing the two
components of Johar, johar.gem and johar.idf, by critically examining the functionality
of classes in each component, including how classes interrelate and how functions are
allocated or distributed among the classes. We also performed an exhaustive comparative
review of four documents - IDF Format Specification document, XML Schema Document or
XSD, the Interface Interpreter Specification document, and the johar.idf package - which
are vital to the smooth running of all interface interpreters and apps. We also developed an
automated testing tool in order to determine whether all errors or violations in an IDF
(Interface Description File) are detected and reported.

As part of this thesis, we designed and implemented an interface interpreter, called Star
that presents WIMP (Windows, Icons, Menus, and Pointers) graphical user interfaces to users,
which is based on the “new version” of Johar. This new version evolved as a result of the
redesign activities carried out on the Johar components and the various modifications effected
during the quality assurance process. We also demonstrated the usage of Star on two apps to
prove Johar’s ability to guarantee smooth interaction between interface interpreters and apps.
Finally, in this thesis, we designed two other interface interpreters which will be implemented
in the near future.

Keywords: Accessibility, Application Development, Software Framework

ii

www.manaraa.com

Co-Authorship Statement

The Johar framework was first designed, implemented, and presented at ASSETS in 2009 by
my supervisor, Dr. Jamie Andrews, and his research assistant, Fatima Hussain. The quality
assurance on Johar, discussed in Chapter 3, was carried out by both of us. I reviewed all the
Johar-related documents (i.e. IDF Format Specification document, Interface Interpreter
Specification document, XML Schema document, and the Johar packages) and submitted a
report afterwards. The review report was then used by my supervisor in making appropriate
corrections in the affected documents, which also include redesigning or restructuring the
Johar packages. Furthermore, I implemented the automated testing tool in Java according to
my supervisor’s specification.

In Chapter 4, the specification documents (which describe both the GUI and behaviour)
for the Star interface interpreter were written by my supervisor, which in turn were reviewed
by me in order to report ambiguities and any conflict with the specification document for all
interface interpreters (i.e. Interface Interpreter Specification document). I implemented the
Star interface interpreter in Java, according to the requirements in those specification
documents. Furthermore, the Appointment Calendar app that was used in our demonstration
was first written by my supervisor for the 2009 version of Johar, and I had to rewrite some
part of the app engine to conform with the new version of Johar. The Temperature Converter
app, which was also used in our demonstration, was written by me.

Finally, in Chapter 5, I wrote the specification documents (which describe both the interface
and behaviour) for Grupo and StarX interface interpreters.

iii

www.manaraa.com

Acknowledgements

I appreciate God for granting me knowledge, understanding, and strength in the course of my
program at Western University.

I thank my supervisor, Dr. Jamie Andrews, for his wonderful support and guidance. Sir,
you are truly a “Gem” and I am grateful for the opportunity to work with you on the “Johar”
project.

I thank the Graduate Chair, Dr. Roberto Solis-Oba, and the Graduate Secretary, Mrs.
Janice Wiersma, for making my student experience a memorable one. I also thank Mrs.
Cheryl McGrath for her help in times of need.

Finally, I appreciate my parents, siblings, spouse, and friends for their inspiring words and
support throughout my stay in Canada. Thank you all!

iv

www.manaraa.com

Contents

Abstract ii

Co-Authorship Statement iii

Acknowledgements iv

List of Figures x

List of Tables xii

List of Appendices xiii

1 Introduction 1
1.1 The Johar Framework . 2

1.1.1 Interface Interpreter (IntI) . 2
1.1.2 Application Engine . 3
1.1.3 Interface Description File (IDF) . 4
1.1.4 Software Architecture of Johar . 7

1.2 Thesis Contribution . 7
1.3 Thesis Outline . 9

2 Background and Related Work 10
2.1 Assistive Technologies . 10
2.2 Accessibility APIs . 12
2.3 User Interface Architectural Models . 13
2.4 User Interface Description Languages . 15
2.5 Personalized User Interface Generators . 17
2.6 Conclusion . 19

3 Quality Assurance on Johar 20
3.1 Review and Redesign of Johar Components 20

3.1.1 The johar.gem package . 20
The Review Process . 22
The Redesign Process . 23

3.1.2 The johar.idf package . 23
The Review Process . 24
The Redesign Process . 24

v

www.manaraa.com

3.2 Review of Johar-related Documents for Consistency 25
3.3 Test Infrastructure for IDFs . 27

3.3.1 Generating Test Cases . 28
Procedure for Generating Valid Test Cases in TS 1 29
Procedure for Generating Invalid Test Cases in TS 2 29
Procedure for Generating Invalid Test Cases in TS 3 32

3.3.2 Running the Test Cases . 35
3.3.3 Interpreting the Test Results . 36

The Error Log . 36
The Summary Report . 39

4 The Star Interface Interpreter 41
4.1 Requirements Specification of Star GUI . 41

4.1.1 The Main Panel . 42
The Menu Bar . 42
The Text Display Area . 42
The Table Area . 43
The Status Bar . 43

4.1.2 The Command Dialog Box . 43
The Parameter Section of the Command Dialog Box 44

4.1.3 The Question Dialog Box . 45
4.1.4 The Help Box . 46
4.1.5 The Message Dialog Box . 48

4.2 Design of Star . 48
4.2.1 Components of Star . 48

4.3 Implementation and Demonstration of Star 50
Interacting with the Temperature Converter App 51
Interacting with the Appointment Calendar App 58

4.4 Quality Assurance on Star . 64

5 Other Interface Interpreters 66
5.1 Previous Interface Interpreters . 66
5.2 The StarX Interface Interpreter . 67

5.2.1 The StarX GUI . 67
Visual Cue for Focused Interface Widgets 68
The Hotkeys Pop-up Table . 69

5.2.2 Rationale for the Choice of Keyboard Shortcuts 69
5.3 The Grupo Interface Interpreter . 70

5.3.1 Working with Tables . 71
Setting the Current Table . 71
Selecting Rows from the Current Table 71
Deselecting Rows in the Current Table 73
Displaying the Content of a Table . 73

5.3.2 Accessing App Commands . 73
Specifying Parameters for App Commands 74

vi

www.manaraa.com

Executing App Commands . 74
5.3.3 Accessing Help Contents . 74
5.3.4 Testing Apps Using Grupo . 75

6 Conclusion 77
6.1 Future Work . 78

Bibliography 79

A Johar Interface Description File (IDF): Format Specification 84
A.1 Syntax . 84

A.1.1 Syntax of Attribute Declarations . 84
A.1.2 Example . 85
A.1.3 Processing of Identifiers as Values . 85

A.2 Allowed Attributes . 86
A.2.1 Top-level Attributes . 86
A.2.2 Sub-attributes of Command . 88
A.2.3 Sub-attributes of Stage and Single-Stage Commands 91
A.2.4 Sub-attributes of Parameter . 92
A.2.5 Sub-attributes of Question . 99
A.2.6 Sub-attributes of CommandGroup . 100
A.2.7 Sub-attributes of Table . 101
A.2.8 Generated Attribute Values . 102

A.3 Johar Booleans . 102
A.4 Camel Case Translation . 103

B Interface Interpreters (IntIs): Requirements Specification 104
B.1 Core Steps . 104
B.2 Other Requirements . 108

C Johar XML Schema Document 111

D Report On The Review Of Johar-Related Documents 118

E “Star” Interface Interpreter: Requirements Specification of the Star GUI 124
E.1 The Main Panel . 124
E.2 The Command Dialog Box . 125
E.3 Parameter Section of the Command Dialog Box 126
E.4 Repetition Section of the Parameter Section 127
E.5 Question Dialog Box . 128
E.6 Help Box . 129

E.6.1 Top-Level State . 129
E.6.2 Command State . 129
E.6.3 Parameter/Question State . 130

F “Star” Interface Interpreter: Requirements Specification (Behaviour) 131

vii

www.manaraa.com

F.1 Top-Level Behaviour . 131
F.2 Selecting a Command from a Menu . 132
F.3 Question-and-Wrapup Procedure . 133

F.3.1 Question Dialog Cancel Button Action 133
F.3.2 Question Dialog OK Button Action 134

F.4 Command Wrapup Procedure . 134
F.5 Refreshing the Tables . 135
F.6 The ShowTextHandler . 135
F.7 The Command Dialog Box . 136

F.7.1 Creating the Command Dialog Box 136
F.7.2 Initialize Stage Procedure . 136
F.7.3 Next Stage Procedure . 137
F.7.4 Previous Stage Procedure . 137
F.7.5 Wrap Up Stage Procedure . 137
F.7.6 Next Button Action . 138
F.7.7 Previous Button Action . 139
F.7.8 OK Button Action . 139
F.7.9 Cancel Button Action . 139

F.8 The Parameter Section . 140
F.8.1 Add Another Button Action . 140
F.8.2 Move Up Button Action . 140
F.8.3 Move Down Button Action . 140
F.8.4 Delete Button Action . 140

G Some Source Code of “Star” Implementation 141
G.1 The Star class . 141
G.2 The CommandDialog class . 146
G.3 The QuestionDialog class . 155
G.4 The HelpBox class . 162

H App Engine of the Temperature Converter App 172

I Interface Description File (IDF) of the Appointment Calendar App 175

J “StarX” Interface Interpreter: Requirements Specification of the StarX GUI 180
J.1 Main Panel . 180

J.1.1 The Menu Bar . 181
J.1.2 The Text Display Area . 181
J.1.3 The Table Area . 181

J.2 The Command Dialog Box . 182
J.2.1 Parameter Section of the Command Dialog Box 182
J.2.2 Repetition Section of the Parameter Section 183

J.3 Question Dialog Box . 184
J.4 Help Box . 184

J.4.1 Top-Level State . 185

viii

www.manaraa.com

J.4.2 Command State . 185
J.4.3 Parameter/Question State . 186

J.5 Keyboard Shortcuts for interacting with certain Widgets 187
J.5.1 Boolean Widget . 187
J.5.2 Choice Widget and TableEntry Widget 187
J.5.3 Date Widget . 188
J.5.4 File Widget . 188
J.5.5 Number Widget . 189
J.5.6 Text Widget . 189
J.5.7 Time Widget . 190
J.5.8 The Message Dialog Box . 190
J.5.9 Hotkeys Pop-Up Table . 191

K “Grupo” Interface Interpreter: Requirements Specification 192
K.1 Commands in Grupo . 192

K.1.1 The browse command . 193
K.1.2 The help command . 193
K.1.3 The table command . 193
K.1.4 The select command . 194
K.1.5 The deselect command . 194
K.1.6 The command command . 194
K.1.7 The param command . 195
K.1.8 The ok command . 195

K.2 Output Message Prefixes . 195
K.3 The Input File . 196

K.3.1 A Sample Input File . 196

L “Grupo” Interface Interpreter: Requirements Specification (Behaviour) 197
L.1 Top-Level Behaviour . 197
L.2 Running Commands in an Input File . 197
L.3 The Parse-and-Execute Command Procedure 198
L.4 Execute App Command Procedure . 201
L.5 Execute Browse Command Procedure . 202
L.6 Execute Help Command Procedure . 202
L.7 Execute Exit App Procedure . 203
L.8 The ShowTextHandler . 204

Curriculum Vitae 205

ix

www.manaraa.com

List of Figures

1.1 Architectural Model of the Johar Framework 3
1.2 User Interaction with Apps via Interface Interpreters (Scenario 1) 4
1.3 User Interaction with Apps via Interface Interpreters (Scenario 2) 5
1.4 The Intent-based Interaction Model . 6
1.5 Software Architecture of the Johar Framework 8

2.1 Relationship between Assistive Technologies, Accessibility APIs, and
Applications . 12

2.2 The Seeheim Model . 14
2.3 The Arch Model . 15

3.1 The Class Diagram of the johar.gem Package 21
3.2 The Class Diagram of the johar.idf Package 25
3.3 A sample annotated IDF for generating test cases 28
3.4 Test Case 1 in TS 1 . 30
3.5 Test Case 2 in TS 1 . 31
3.6 Test Case 1 in TS 2 . 32
3.7 Test Case 2 in TS 2 . 33
3.8 Test Case 1 in TS 3 . 34
3.9 Test Case 2 in TS 3 . 35
3.10 Architecture of the Automated Testing Tool 37
3.11 Error Log for Test Case 1 in TS 1. [No error is detected] 38
3.12 Error Log for Test Case 1 in TS 2. [An error is detected] 38
3.13 Summary Report of the tests . 39

4.1 The Main Panel of Star GUI . 42
4.2 The Command Dialog Box of Star GUI . 44
4.3 The Parameter Section of the Command Dialog Box 45
4.4 The Question Dialog Box of Star GUI . 45
4.5 The Help Box of Star GUI [Top-Level State] 46
4.6 The Help Box of Star GUI [Command State] 47
4.7 The Help Box of Star GUI [Parameter/Question State] 47
4.8 The Message Dialog Box of Star GUI . 48
4.9 The Class Diagram showing the key components of Star and the relationship

among them . 50
4.10 IDF for the Temperature Converter App . 52
4.11 The XML equivalent of the Temperature Converter App’s IDF 53

x

www.manaraa.com

4.12 Main Panel of the Temperature Converter App 54
4.13 Main Panel of the Temperature Converter App [The Convert Menu] 55
4.14 Main Panel of the Temperature Converter App [The Star Menu] 55
4.15 The Command Dialog Box for the “Celsius to Fahrenheit” Command 56
4.16 Text Display Area shows the conversion result 56
4.17 Top-Level State of the Temperature Converter App’s Help Box 57
4.18 Command State of the Temperature Converter App’s Help Box 57
4.19 Parameter State of the Temperature Converter App’s Help Box 57
4.20 The Question Dialog Box confirming user’s intent to exit the App 58
4.21 Main Panel of the Appointment Calendar App 59
4.22 Main Panel of the Appointment Calendar App [The Appointment Menu] 59
4.23 Command Dialog Box for the “Add Appointment” Command 60
4.24 A notification and a new appointment are shown in the Text Display Area and

Appointment table respectively . 60
4.25 Weeks table indicates the existence of three appointments 60
4.26 Selecting the “Go To Date” Command . 61
4.27 The Command Dialog Box for the “Go To Date” Command 61
4.28 Selecting an appointment from the Appointment table 62
4.29 Cancelling the selected appointment via the “Cancel Appointment” Command . 62
4.30 Cancellation notification in the Text Display Area and deletion of appointment

from the Appointment table . 62
4.31 Top-Level State of the Appointment Calendar App’s Help Box 63
4.32 Selecting the Exit Command to terminate the Appointment Calendar App . . . 63
4.33 A Message Dialog Box notifying the user of a successful termination of the App 64

5.1 A red border acting as a visual cue for a widget that currently has focus 68
5.2 The Hotkeys Pop-up Table . 69
5.3 An input file containing Grupo commands for interacting with the Appointment

Calendar App . 72
5.4 Grupo accepts a test case, executes it against the App Engine via Johar, and

displays output information on Standard Output for a Tester’s perusal 75

A.1 Example of IDF syntax. 85
A.2 Examples of camel-case translation. 103

xi

www.manaraa.com

List of Tables

2.1 An example of a blind user’s capability captured in the Knowledge Base 18

3.1 Some results of the review of Johar-related documents for consistency 26

4.1 Outcome of reviewing Star Specification documents in conjunction with the
Interface Interpreter Specification document 65

5.1 Prefix for each category of information displayed on the Standard Output 76

B.1 Bindings of Johar parameter types to Java types. 107

J.1 Keyboard shortcuts for the Menu Bar . 181
J.2 Keyboard shortcuts for the Text Display Area 181
J.3 Keyboard shortcuts for the Table Area . 182
J.4 Keyboard shortcut for the Cancel, Previous, Next and OK buttons 182
J.5 Keyboard shortcuts for the Parameter Section 183
J.6 Keyboard shortcuts for buttons in the Repetition Section of a Parameter Section 184
J.7 Keyboard shortcuts for the Question Dialog Box 184
J.8 Keyboard shortcuts for the Help Box buttons 185
J.9 Keyboard shortcuts for the Top-Level State’s Commands table 185
J.10 Keyboard shortcuts for the Command State’s Text Area 186
J.11 Keyboard shortcuts for the Command State’s Parameters table 186
J.12 Keyboard shortcuts for the Command State’s Questions table 186
J.13 Keyboard shortcuts for the Parameter/Question State’s Text Area 187
J.14 Keyboard shortcuts for the Boolean Widget 187
J.15 Keyboard shortcuts for the Choice/TableEntry Widget 188
J.16 Keyboard shortcuts for the Date Widget . 188
J.17 Keyboard shortcuts for the File Widget . 189
J.18 Keyboard shortcuts for the Number Widget 189
J.19 Keyboard shortcuts for the Text Widget . 190
J.20 Keyboard shortcuts for the Time Widget . 190
J.21 Keyboard shortcut for the Message Dialog Box 191

K.1 Grupo Commands . 193
K.2 Prefixes of output messages . 196

xii

www.manaraa.com

List of Appendices

Appendix A Johar Interface Description File (IDF): Format Specification 84
Appendix B Interface Interpreters (IntIs): Requirements Specification 104
Appendix C Johar XML Schema Document . 111
Appendix D Report On The Review Of Johar-Related Documents 118
Appendix E “Star” Interface Interpreter: Requirements Specification of the Star GUI . . 124
Appendix F “Star” Interface Interpreter: Requirements Specification (Behaviour) 131
Appendix G Some Source Code of “Star” Implementation 141
Appendix H App Engine of the Temperature Converter App 172
Appendix I Interface Description File (IDF) of the Appointment Calendar App 175
Appendix J “StarX” Interface Interpreter: Requirements Specification of the StarX GUI . 180
Appendix K “Grupo” Interface Interpreter: Requirements Specification 192
Appendix L “Grupo” Interface Interpreter: Requirements Specification (Behaviour) . . . 197

xiii

www.manaraa.com

Chapter 1

Introduction

Accessibility in computing is concerned with the removal of barriers that exclude some group
of people from using the computer. Designing software applications for accessibility is
concerned with making programs and functionality available to a variety of users, whether
disabled or non-disabled. Unfortunately, almost all software applications contain some
barriers to people with disabilities [1]. Although there are assistive technologies (such as
screen readers) to bridge this digital divide, many applications are incompatible with these
technologies since they were designed for non-disabled users. This situation may continue to
worsen, considering the increasing population growth of disabled people. For example,
approximately 56.7 million Americans (18.7% of the civilian noninstitutional population)
have some form of disability as at 2010, as opposed to the 54.4 million population in 2005 [2].
Moreover, the World Health Organization (WHO) estimated that 285 million people are
visually-impaired globally in 2010 (out of which 39 million are blind) [3], and the global
population of blind people is expected to increase to 78 million by 2020 [4].

Furthermore, in order to make an application accessible, the interface through which a user
interacts with the application to undertake his or her tasks must be considered. This interface
(popularly known as user interface) can be graphical, vocal or textual, but the decision about
how it should be presented must be based on the ability of the user. For example, a blind user
cannot read commands and information presented in graphical or visual format (e.g. menus,
tables, buttons, icons, etc.); a deaf user cannot comprehend any information presented vocally
(i.e. speech output); a low vision user cannot read any text presented in small font or notice
a small control; a motor-impaired user will have difficulty controlling a pointer and clicking
with the mouse; etc. Hence, an application becomes accessible if its user interface fits users’
abilities and needs.

Some research efforts have already been directed towards making applications accessible
to disabled and non-disabled users. These efforts led to the development of assistive

1

www.manaraa.com

2 Chapter 1. Introduction

technologies (such as screen readers for blind users [5][6][7], screen magnifiers for low-vision
users [8], pointing tools for motor-impaired users [9], speech-enabled systems for blind and
low-vision users [10]), accessibility APIs (used by assistive technologies and applications to
access interface components) [11][12][13], and personalized user interface generators which
automatically generate user interfaces based on users’ ability or preferences [14][15][16].
Unfortunately, assistive technologies are not compatible with all applications, and the
generated user interfaces may not fit the ability and needs of every user.

Our determination to complement the efforts of other researchers in resolving accessibility
issues led to the development of our Johar framework [17], which facilitates the development
of applications accessible to both disabled and non-disabled people.

1.1 The Johar Framework

“Johar” is a framework that facilitates the development of applications that can be used by
both disabled and non-disabled users [17]. The Johar framework promotes the separable
interface theory [18] by providing a separation between the front-end user interface and the
application-specific logic. Thus, experienced user interface designers can focus on developing
user interfaces that fit the ability and needs of users, while application developers can focus on
implementing the underlying functionality or application-specific logic of applications.

In our work, the ability-based front-end interfaces are called Interface Interpreters, while
their designers are known as Interface Interpreter developers. The application-specific logic or
functionality implemented by application developers are called applications or apps. The
Johar framework binds each Johar interface interpreter to each Johar app [17]. Thus,
improvements in interface interpreters automatically improve access to all applications, and
improved applications are accessible to all users [17]. This is in contrast to other efforts in
accessible software development, in which improvements often help one group of users to
access one kind of application.

As shown in Figure 1.1, a user interacts with an app using an Interface Interpreter that is
suitable. This interface interpreter first reads the Interface Description File (IDF) written by
the app developer, and then communicates with the application engine through Johar.

1.1.1 Interface Interpreter (IntI)

The interface interpreter is the mediator between the user and a Johar app. An interface
interpreter usually supports specific user groups (e.g. blind users, motor-impaired users, deaf

www.manaraa.com

1.1. The Johar Framework 3

Interface
Interpreter

User

Johar

Written by
interface

IDF

Written by
application
developer

developer
interpreter

Application
Engine

Figure 1.1: Architectural Model of the Johar Framework [17]

users, etc.). Thus, in order to access the desired app, each user must select an interface
interpreter that suits his or her ability and needs (see Figure 1.2 and Figure 1.3). For example,
a non-disabled user can select a graphical or WIMP1 interface interpreter; a blind user can
select a speech-driven/sound-based interface interpreter; a motor-impaired user can select an
interface interpreter that support certain interaction techniques depending on their dexterity
(e.g. scanning-based interaction, eye gaze, head gestures, voice-driven interaction,
mouse-driven interaction, keyboard-driven interaction etc.); and so on.

Interface interpreters interact with various input/output devices (e.g. keyboard, camera,
speaker, microphone, GPS device etc.) to get input data from users, and to present output data
in a form that the user can perceive via their working senses (e.g. hearing, sight, etc.).

1.1.2 Application Engine

The application engine or app engine contains the application-specific logic, which is made up
of various components and objects that perform series of computations on the input in order to
transform it to an output. The app engine is the core of any Johar app. The app engine receives
input data from the interface interpreter, and then performs computations on the data, thereby
producing an output which is sent to the interface interpreter. The output can be in form of
table data or text. During computation, the app engine may access external resources, such as

1WIMP stands for Windows, Icons, Menus, and Pointers. The most prevalent of the graphical user interfaces
(GUIs) is the WIMP interface [19].

www.manaraa.com

4 Chapter 1. Introduction

Figure 1.2: Each user can access all Johar apps via his or her selected Interface Interpreter [17]

databases, files, third-party APIs, etc.

1.1.3 Interface Description File (IDF)

The Johar IDF contains a high level description or definition of a user interface. Our approach
to defining interfaces is based on the Intent-based Interaction Model, presented in Figure 1.4.
In this model, every interaction session between a user and a Johar app can be described as
a cycle which alternates between a phase in which the user specifies what they intend the
application to do (Intent Specification), and a phase in which the app does it (Application
Computation) [17]. This interaction cycle begins when an app is launched.

Whenever a user launches an app, the app engine may perform some initial computation
and presents initial data to the user. Afterwards, the user is required to specify his or her intent
depending on the task at hand. While specifying his or her intent, a user may browse the
initial data (e.g. table data), select data (e.g. select single or multiple rows in a table), select a
command (e.g. selecting a menu in a GUI or typing a command in a text-based/command-line
interface), select parameters (which are inputs to a command), refine his or her intent by
providing additional parameters, and confirm his or her intent (e.g. by answering an are you

sure question). Once the intent specification is fully completed, the app performs some
computation (via the app engine). Thus, activities 1 and 2 are application-specific and
performed by the application engine, while activities 3, 4, and 5 take place at the
interface-level through the use of an interface interpreter (by the user).

www.manaraa.com

1.1. The Johar Framework 5

Figure 1.3: Each app can be accessed by all users via their selected Interface Interpreters [17]

The IDF Format

The objectives of any IDF are: (1) to describe the nature of an application and the

functionality available to users; and (2) to describe the nature of the data that will be

exchanged between the user and the application. In a bid to accomplish these objectives, the
IDF is structured as a tree of attribute instances, where each attribute instance can have a
name and value [17]. The attribute value can contain more attributes. Each attribute-value pair
contributes towards achieving the objectives above. A brief description of some important
attributes of an IDF is given below. Appendix A of this thesis shows all the attributes and their
respective semantics and syntax.

• ApplicationEngine: This attribute specifies the class that contains the application-
specific logic of the app.

• Command: This attribute represents the basic top-level unit of user-application
interaction. A Command represents a service or functionality provided by the app. It also
corresponds to a broad statement of intent the user can make. For example, in a
graphical Word Processor, the “Copy” menu item is a command; while in a Unix
terminal, “cp” is the equivalent command for “Copy”. The sub-attributes of Command
specify the app engine method that determines if a command is active, the help
messages, priority level or prominence of the command, questions to ask users, app

www.manaraa.com

6 Chapter 1. Introduction

Interface Interpreter

Intent confirmation,
Intent refinement,

Parameter selection

Broad statement
of intent Data selection

Data browsing,

computation

Application

presentation
Data

5

1 2

34

App−Specific

Generic

Application Engine

Figure 1.4: The Intent-based Interaction Model [17]

engine method that performs the actual computation, label of the command, app engine
method that determines whether the app should quit after performing the computation,
and stages of the command (for wizard-style interaction).

• CommandGroup: This attribute represents a group of related commands. For example, in
a graphical text editor, the File menu is a command group. Its sub-attributes specify the
label of the command group, and each command in the group.

• Table: This attribute represents a list of similar data entities (i.e. table) presented to the
user by the app engine. Its sub-attributes specify the default table header, default column
names, and a value stating whether the table is browsable or not. A browsable table is
visible to the user, and rows can be selected from it.

• Parameter: This represents a piece of data which comes from the user and is relevant
to the Command, such as an integer, floating-point number or string. It has many sub-
attributes, but the important sub-attribute is the Type, which specifies the parameter type.
The valid types are int, float, boolean, text, file, tableEntry, choice, date,
and timeOfDay. A Parameter of type tableEntry must contain the SourceTable
attribute.

• Question: This represents a question that should be asked of the user. The
sub-attributes of Question are similar to most of the sub-attributes of Parameter,
except that Question has a sub-attribute that specifies the app engine method which
determines whether the question should be asked or not. Questions can be used to
confirm a user’s intent, before the required computation is performed.

www.manaraa.com

1.2. Thesis Contribution 7

The IDF is written in a domain-specific language which is more concise than XML.
However, it is internally converted to XML during processing; thus, no technical skill is
required (from an app developer) to write a complete IDF for an app.

1.1.4 Software Architecture of Johar

The current Johar framework is implemented in Java, and it consists of two main packages
(johar.gem and johar.idf). The johar.gem package contains several classes that work
together to ensure smooth dialogue between the interface interpreter and the application engine
(such as facilitating exchange of data between them, and also invoking appropriate methods in
the application engine to handle users’ requests). The johar.idf provides APIs that are called
by the interface interpreter to access the content (i.e. attributes and values) of an IDF.

Figure 1.5 shows the software architecture of the Johar framework. Although we hope to
port Johar to other platforms in the future, we expect that the architecture will remain very
similar.

1.2 Thesis Contribution

The overall goal of this thesis is to assure the quality of Johar, and to do so in a way that
allows us to reflect and report on our quantitative and qualitative observations. To achieve
this goal, we performed a comprehensive review of the entire Johar project so as to detect and
correct inconsistencies, omissions, irrelevances, and other loopholes that can hinder successful
deployment of Johar. We also implemented a complex interface interpreter and designed two
additional interface interpreters. We can never say that any program is completely free of bugs,
or that design documents are of the maximum quality. However, we believe that the result of
our work is a set of documents and a working interface interpreter implementation that are, to
the best of our knowledge, complete, internally consistent, and consistent with each other.

We started work with the review of Johar’s components, which are the johar.gem and
johar.idf packages. We discovered that the johar.idf package is poorly structured because
only one class performs the overall function of the package. This kind of structure is bug-prone,
encourages code duplication, and prevents code reuse. We addressed this issue by restructuring
the johar.idf package into a suite of specialized and interrelated classes.

The next phase of our quality assurance process involves comparing four documents for
consistency. The documents are: IDF Format Specification document2, XML Schema

2defines the syntax and semantics of all the attributes an IDF can contain.

www.manaraa.com

8 Chapter 1. Introduction

johar.gem

Convey commands, parameters
and question responses

Extract text to display

Display text

Interface
Interpreter

Application
Engine

Browse and select table rows

Elicit commands, parameters
and question responses

IDF
Read

User

Extract table data

Display table data

Supply text to display

Supply and modify table data

Extract command, parameter
and question information

Figure 1.5: Software Architecture of the Johar Framework [17]

document3, the Interface Interpreter Specification document4, and the johar.idf package.
The outcome of this review process revealed some discrepancies. We addressed these
discrepancies by making appropriate changes to these documents and their dependencies.
Furthermore, we decided to build a test infrastructure for IDFs, since they are critical to the
smooth running of interface interpreters. The test infrastructure determines whether all IDF
attributes are captured by the XML Schema and johar.idf package. It also verifies whether
the XML Schema correctly validates an IDF, and whether all errors in an IDF are caught and
reported.

Furthermore, since we have modified Johar in the course of our quality assurance activity,
we needed to test the practicability of the framework by developing and running an interface
interpreter and apps. Thus, we designed a new interface interpreter, called Star, which

3used for validating the XML-equivalent of an IDF.
4specifies the general behaviour of all interface interpreters.

www.manaraa.com

1.3. Thesis Outline 9

provides a graphical user interface (GUI) through which users can access any Johar app. The
design documents of Star describe both the look-and-feel and behaviour of Star. We then
reviewed these design documents and the Interface Interpreter Specification document for
consistency. After completing the review process and resolving inconsistencies and
ambiguities, we implemented and tested Star. Also, we demonstrated the usage of Star with
an app.

In the last phase of our work, we wrote design documents for two future interface
interpreters - StarX and Grupo. The StarX interface interpreter extends Star by providing
keyboard shortcuts through which users (especially users with limited hand use) navigate the
entire graphical user interface. Grupo is a “batch-mode” interface interpreter that provides
commands through which users carry out their tasks.

Finally, in the near future, we hope to release the first version of Johar as open source;
and we expect researchers, experienced interface designers, and application developers around
the world to explore Johar, and to build interface interpreters and apps on top of it. Thus, in
not so distant future, we would have formed Johar interface interpreter and app developers

community, as well as users forum that will serve as a platform on which Johar developers
brainstorm, and on which app users share their views and experiences.

1.3 Thesis Outline

Chapter 2 contains the background and related work. Chapter 3 contains a detailed description
of the quality assurance processes, and the resulting effects on the internal structure of Johar
and its dependencies. Chapter 4 contains the specification, design and implementation details
of our new interface interpreter for graphical interfaces, called Star. This chapter also contains
a description of how we assure the quality of Star, and how we used Star to access (and interact
with) a Johar app. Chapter 5 contains the specification of two other interface interpreters,
called Grupo and StarX. The last chapter of the thesis, Chapter 6, contains the summary and
conclusion.

www.manaraa.com

Chapter 2

Background and Related Work

The background of this thesis is drawn from the answers to the following questions: What are
the technologies currently used by disabled people to access applications? What techniques
are adopted by these technologies to provide accessibility? Section 2.1 and Section 2.2 provide
a summary of the research conducted to find answers to these questions.

Our research findings summarized in Sections 2.1 and 2.2 revealed the vital role a user
interface plays in making an application accessible. This revelation led to the following
questions: What is the general structure or model of a user interface? How can a user interface
be designed to support users with diverse abilities? We conducted further research in order to
answer these questions. Section 2.3 presents a summary of our findings for the first question,
while Sections 2.4 and 2.5 are for the second question.

2.1 Assistive Technologies

People with disabilities - such as visual impairment, blindness, and motor impairment - can
operate computers to perform their tasks via assistive technologies.

For computer users with low vision, the prominent assistive technology is screen
enlargement software, such as ZoomText Magnifier [20] and MAGic [8], which increase the
size of controls and texts on the screen so they can be clearly visible to users. Screen readers
assist blind users in using applications on computers. Screen readers basically read computer
screens and speak the text contents [21]. In other words, screen readers have the capability to
analyze user interface components (menus, message/dialog boxes, text containers, etc.) and
produce the speech output of their contents [22]. Most screen readers support Braille displays.
Some of the prominent screen readers are Job Access With Speech (JAWS) [5], Non-Visual
Desktop Access (NVDA) [6], Windows Eyes [7], ZoomText Reader [20], Narrator [23],

10

www.manaraa.com

2.1. Assistive Technologies 11

VoiceOver [24], Linux Screen Reader [25], and Orca [26]. These screen readers run on
specific platforms; for example, the first five screen readers above run on Windows operating
systems, VoiceOver runs on Apple-based operating systems (Mac OS X, iOS), while Linux
Screen Reader and Orca run on GNOME-compliant operating systems (OpenSolaris, Ubuntu,
etc.). JAWS, NVDA and VoiceOver are the commonly-used screen readers [27].

Assistive technologies for motor-impaired users also exist. Punyabukkana et al. [10]
designed a sound-based input system that allow users to traverse, select, and activate
commands in Windows GUI just by humming and making fricative sounds. The hum sound
initiates traversal in a direction (e.g. moving from one menu to the other in the right
direction), while the fricative sound stops the traversal and activates the selected command.
The pitch of the hum sound is used to determine the direction of the traversal. These two
sounds were also used in controlling the cursor to perform point-and-click tasks (e.g. clicking
a button to launch an application or save a document) [28]. The hum sound controls the
pointer, while the fricative sound clicks the control (e.g. button or icon) at the location of the
pointer. Another assistive technology for the motor-impaired is ceCursor [9] which uses
eye-gaze tracker in controlling a screen pointer on Windows. The user can move the cursor in
one of four directions (up, down, left, right) by gazing in that direction, and clicking of
interface controls is achieved whenever the user looks at the centre of the cursor for 1 second.

Biswas et al. presented new systems to assist computer users with severe motor impairments
[29][30]. The first is the cluster scanning system which identifies potential targets (e.g. buttons,
icons, menus, and other widgets) on the screen and then groups them into clusters based on
their locations. The user selects the cluster containing the target using a push button switch,
and then the system iteratively divides the selected cluster into smaller clusters, until only one
cluster remains (which contains the target). The second system combines eye-gaze tracking
and scanning techniques to achieve greater efficacy. The eye-gaze tracker moves the pointer
closer to (or on) the target, and then the system switches to the 8-directional scanning mode
(after a key press from the user) to focus and click on the target.

Although these assistive technologies have helped computer users with impairments to
interact with applications on computers, most high-quality commercially-available screen
readers and magnifiers are expensive, as well as eye-gaze trackers and switches (which are not
widely available). Also, most screen readers do not provide access to all applications, since
they have difficulty interpreting some widgets (e.g. custom controls) [31]. Finally, most
generic accommodation techniques for users with motor-impairments have difficulty working
with applications with complex GUI layout and small interface controls.

www.manaraa.com

12 Chapter 2. Background and RelatedWork

2.2 Accessibility APIs

Accessibility APIs (Application Programming Interfaces) mediate between assistive
technologies and applications. As shown in Figure 2.1, a user interacts with an application via
an assistive technology, which in turn relies on an accessibility API to perform its function.
Accessibility APIs enable assistive technologies to successfully identify, access, and
manipulate elements of an application’s user interface.

Microsoft developed two accessibility APIs that allow assistive technologies to access
applications running on Windows operating systems. The first API is called Microsoft Active
Accessibility (MSAA) [11], which is based on the Component Object Model (COM)
technology. It provides API elements which contain methods for exposing information about
user interface elements. Thus, assistive technologies (via the OLEACC library) can interact
with and retrieve the content of standard or common interface controls for any Windows
application. The IAccessible interface of MSAA allows applications to further expose
information about interface elements that are not available to assistive technologies by default
(e.g. custom controls and windowless elements). Assistive technologies are notified (via
WinEvents or Windows Events) of changes in interface elements. They retrieve the contents
of (and other information about) interface elements through the properties exposed to them
(e.g. Name, Role, Location, Value, Description, Help, etc.), and can also navigate the tree of
interface elements (i.e. object model) in order to understand the structure of the user interface.
An example of a screen reader using MSAA is JAWS [5].

Assistive

Technology

Accessibility API
(MSAA, IAccessible2, AT-SPI, etc.)

Application

User

Figure 2.1: Relationship between Assistive Technologies, Accessibility APIs, and Applications

The latest API developed by Microsoft is UI Automation [12]. UI Automation offers
support for new user interface elements, exposes a richer set of properties and control patterns
for UI elements, offers flexibility in navigating the object model (via scoping and filtering),
and allows application developers to define custom control patterns, properties, and events.

Another post-MSAA API is IAccessible2 [13], which supports rich-text controls, Web 2.0
technologies, tables, and spreadsheets. This API is useful for rich document applications, such
as Word Processors, Spreadsheet packages, Web browsers using AJAX and DHTML, and so
on. IAccessible2 supports applications running on Windows and Unix operating systems.

www.manaraa.com

2.3. User Interface ArchitecturalModels 13

Other accessibility APIs are the ATK (Accessibility Toolkit) and AT-SPI (Assistive
Technology Service Provider Interface) [32] which provide access to both GNOME and
non-GNOME based applications on Unix platforms; OS X Accessibility Protocol [33] which
supports applications on Mac OS X; and the Java Accessibility API
(javax.accessibility) [34] which support Java applications.

Accessibility APIs are not capable of exposing the underlying functionality of applications
to assistive technologies. Hence, users with disabilities, especially blind users, may experience
difficulty building accurate mental models of an application since information collected by
screen readers (for instance) at the interface level might not be sufficient to understand what
the application is doing or can do. Moreover, developers, who have designed their GUIs mostly
for non-disabled users, will need to expend extra development cost and effort in making their
custom GUI controls accessible.

2.3 User Interface Architectural Models

Earlier methods of system development require that the user interface and the system’s
functionality be managed in the same component. However, the resulting effect of this
approach is the production of systems that resist modification and present difficulty in
providing for human factors [35]. The panacea to this problem is postulated to be Separable
Interface Theory, which promotes the separation of the user interface from the functional
aspects of a system [18]. This theory has become a building block on which systems are
developed.

One of the most influential models that promote separable interface theory is the Seeheim
model [36]. As shown in Figure 2.2, the Seeheim model has three components: presentation
component, dialogue control, and the application interface model. The presentation component
generates the physical user interface that the user interacts with. The presentation component
interacts with the input/output devices to receive input data from users and to display output
data to users. The presentation component sends input data to (and receives output data from)
the application interface model via the dialogue control. In other words, data representing a
user’s requests are channeled through the dialogue control to the appropriate procedure in the
application program, which performs necessary computations on the data, and then sends the
results to the presentation component through the dialogue control. The application interface
model represents the application, including the data objects, procedures, and constraints. These
constraints are restrictions on the input supplied by users.

Similar to the Seeheim model, but with slightly different structure, is the Arch model [37].

www.manaraa.com

14 Chapter 2. Background and RelatedWork

Presentation

Component

Dialogue

Control

Application Interface

Model
USER

Figure 2.2: The Seeheim Model [36]

The goal of developing the Arch model is to generate user interfaces that manage the
interaction between two externally-provided components - application domain functionality
and the UI toolkits [37]. Five components make up the Arch model, with each serving a
different purpose (as shown in Figure 2.3). The presentation component generates the virtual
representation of the user interface (using presentation objects), while the interaction toolkit
component generates the physical interface (using interaction objects supplied by UI Toolkit
packages or software, e.g. Java Swing GUI toolkit, Google maps driver, speech drivers, etc.).
The interaction objects in the physical interface correspond to the presentation objects in the
virtual interface. Application-specific functions (including managing domain data) are
handled by both the domain-specific and domain-adaptor components through the domain
objects. The domain-adaptor component provides services related to the presentation of
information, while the domain-specific components perform operations or computations that
do not relate to the user interface. The dialogue component coordinates the interaction
between the presentation component and the domain-adaptor component, in terms of data
exchange and sequencing of tasks.

Other interface architectural models that complement the Seeheim model are Model-View-
Controller (MVC) [38] and Passive-View-Command (PVC) [39].

Our work fits the separable interface theory, since the front-end interface interpreters are
separated from the application engine, and the communication between both are facilitated by
the Johar framework.

Alonso et al. [40] aimed to develop a user interface model for the blind. The model is built
upon six human-computer interface models by supplementing each of them with additional
requirements for blind users. The models are task model, domain model, dialog model,
presentation model, platform model, and user model [40]. The summary of each model’s
additional requirements for the blind are: (1) the tasks described in the task model should fit
the user’s ability; (2) the domain model should define a sequence of windows and window

www.manaraa.com

2.4. User Interface Description Languages 15

Figure 2.3: The Arch Model [37]

components that conform to 1-dimensional navigation and also provide speech and Braille
output to support user interaction; (3) the dialog model should support keyboard or equivalent
as interaction medium for input, while output messages should be received via speech
synthesizers or Braille displays; (4) the presentation model should also define the speech and
Braille output for each interface object, as well as the different levels of user experience; (5)
the platform model should define the capabilities of speech and Braille output provided by
standard APIs [40]; and (6) the user model should include certain configuration parameters,
such as the speech parameters, Braille parameters, and detail level of output messages [40].
Our work complements that of Alonso et al, since their model can be used to build interface
interpreters for the blind.

2.4 User Interface Description Languages

User interface management systems require a description of the user interfaces to be
implemented in order to automatically (or semi-automatically) generate the interfaces [36].
This description of user interfaces can be achieved via user interface description languages
(UIDLs). UIDLs allows interface designers to describe a user interface using high-level
constructs or syntax which abstract away implementation details as well as details of input
and output devices [41]. Most UIDLs are XML-compliant languages (in order to take
advantage of XML’s platform-independence), which can then be read directly by renderers or

www.manaraa.com

16 Chapter 2. Background and RelatedWork

interface generators to produce desired user interface for target platforms.

We studied four UIDLs, namely UIML (User Interface Markup Language) [42], XIML
(eXtensible Interface Markup Language) [43], USIXML (USer Interface eXtensible Markup
Language) [44], and AUIML (Abstract User Interface Markup Language) [45] in order to
understand their approach to specifying user interfaces. In UIML, user interface elements (or
parts) and their associated content (e.g. text, images, sound, etc.), presentation style (e.g.
layout, colour, font, size, etc.) and interaction behaviour are represented using customized
tags and vocabularies. The vocabularies are supplied by the User Interface toolkit(s) (e.g.
Voice toolkit - for voice enabled interfaces, HTML toolkit - for web interfaces, Java
AWT/Swing - for graphical user interfaces, etc.) required for presentation or rendering.
UIML can also specify the connection of the user interface to the application logic.

Unlike UIML, USIXML describes a user interface in four levels of abstractions depending
on the context of use [44]. The levels in order of abstraction (high to low) are tasks and

concepts, abstract user interface (AUI), concrete user interface (CUI), and final user interface

(FUI). The tasks and concepts level views a user interface as composed of interrelated tasks
and the domain (i.e. representation of real-world objects) in which the tasks are undertaken.
The AUI level views a user interface as composed of interrelated abstract interaction objects,
which can be grouped into various interaction spaces (i.e. containers). The CUI level describes
the appearance (using concrete interaction objects which are closer to the physical widgets)
and user’s modality of interaction (graphical or auditory) with the interface. The FUI level
presents the physical user interface shown to the user.

Similar to USIXML is XIML, which groups user interface components into abstract and
concrete. The abstract components are task, domain, and user. The task and domain

components are similar to tasks and concepts in USIXML, while the user component defines
the characteristics of each user group or individual user. Furthermore, the concrete
components in XIML are dialog and presentation, which are similar to the concrete user

interface in USIXML. The presentation component describes the appearance of the user
interface, while the dialog component describes the modality of interaction. Like USIXML,
the relationship between interface elements within each component or across components is
also captured. Unlike USIXML, XIML does not describe the platform-dependent and
toolkit-dependent representation of the final interface shown to the user.

Finally, IBM developed AUIML for internal use with a view to defining user interfaces
based on the purpose or intent of interaction, rather than appearance [45]. But AUIML, like
other languages mentioned above, describes the look or layout of the user interface using
toolkit-independent objects, such as GROUP, TREE, etc [46]. Similar to UIML, AUIML

www.manaraa.com

2.5. Personalized User Interface Generators 17

specifies actions that associate application routines with these objects [47].

2.5 Personalized User Interface Generators

Personalized User Interface Generators are developed by researchers to automatically generate
user interfaces tailored to individual users’ ability, preferences, and needs. The fundamental
requirement for all user interface generators is an abstract description of the interface they need
to generate, and this is achievable using any of the available UIDLs. Some of the relevant user
interface generators we studied are SUPPLE [14], SUPPLE++ [15], and EGOKI [16].

SUPPLE and SUPPLE++ generate user interfaces to support motor-impaired users in
performing point-and-click tasks (i.e. tasks involving clicking, dragging, pointing, list
selection, etc.). SUPPLE relies on an interface specification, device model, usage model, and
a cost function in order to generate the desired user interface. The interface specification

describes the types of data (including associated constraints) to be exchanged between the
application and the user, as well as action types (which are useful for invoking application
methods at run-time). The device model is a representation of available widgets, as well as
device-specific constraints. The usage model represents usage patterns or traces generated as
the user interacts with the user interface. These usage patterns are used by SUPPLE in
determining the prominence or priority of interface widgets, during the layout process or
customization. The cost function determines the presentation style and quality of the user
interface. For SUPPLE, the model of user preferences is used as the cost function. In order to
obtain the model of user preferences, each user interacts with a preference-elicitation tool
(developed by the authors, called ARNAULD) which asks the user to choose from queries
showing two functionally equivalent but different user interface fragments (for example, a
user may be asked to choose between list box and combo box, radio buttons and combo box,
check boxes and list box, etc.). Alternatively, the ARNAULD system may show the user a
preview of how the user interface for an application will look when generated; afterwards, the
user is asked to suggest improvements to this user interface. The user is also allowed to
customize the user interface at run-time (such as re-arranging widgets or removing widgets).
The authors of SUPPLE conducted experiments by generating user interfaces for
non-disabled users, motor-impaired users, and users with slight vision impairment [14][48].

Similar to SUPPLE is SUPPLE++, which personalizes interfaces based on users’ motor
abilities, instead of user preferences. To achieve this, SUPPLE++ has a built-in ABILITY
MODELER, which builds a model of users’ motor abilities after observing their performance
on pointing, dragging, list selection, and multiple clicking tasks. This ability model is then

www.manaraa.com

18 Chapter 2. Background and RelatedWork

used as the cost function to generate the ability-based user interface [15] [49].

EGOKI generates user interfaces that provide access to ubiquitous services. It requires a
UIML document, and the target user’s capability as inputs. The UIML document specifies the
structure, style, content, and behaviour of interface elements. Moreover, the UIML document
contains all functionality provided by the service, as well as the media types (i.e. audio, video,
text, image, etc.) for the resources supplied by the user interface toolkit. The service
functionality and media types are assigned priorities in order to guide selection of interface
resources or widgets during layout. Furthermore, EGOKI maintains a knowledge base
containing information about each media type and its associated resources and possible
adaptations, based on user capabilities. Each user capability is formed by combining each
interaction modality1 and each capability level2. For instance, Table 2.1 shows an example of
the capability of blind users, and the corresponding media type, resources, and adaptations.

Modality
Media Resource Adaptation

Vision Auditory Speech Motor Cognitive Type

Null High High High High

Audio Text

Navigation Support,
Video Text

Image Text Text Header

Text Text

Table 2.1: An example of a blind user’s capability captured in the Knowledge Base

Furthermore, the EGOKI system begins the user interface generation process by selecting
the appropriate resources and adaptations (using the target user’s capability to search the
knowledge base for a match) for each functionality provided by the service. It then transforms
the abstract user interface (described in the UIML document) into the final user interface, after
confirming that the selected resources are available in the UI toolkit specified in the UIML
document. The final user interface generated is in XHTML format, which can easily be
rendered for display on target devices. Any extra adaptation or customization can be applied
to the user interface using CSS (Cascading Style Sheets).

Our work complements those of SUPPLE and SUPPLE++, since the resources, such as
those used in achieving automatic and user-driven customization of interface elements, can be
incorporated into graphical interface interpreters. Finally, in contrast to our work, EGOKI’s
final user interface can only be rendered as a Web interface on target devices, which may not

1Vision, Auditory, Motor, Speech, and Cognitive [16]
2High, Low, and Null [16]

www.manaraa.com

2.6. Conclusion 19

be suitable for blind users. Even though screen readers are available for web interfaces, their
verbosity while reading screen contents can slow down blind users, thereby increasing task
completion time.

2.6 Conclusion

From our research findings presented above, the following shortcomings are evident. The Johar
framework is aimed at addressing these issues.

(1) Assistive Technologies are not compatible with all applications, and also not suitable for
all disabled users.

(2) Most interface description languages require developers to describe specific patterns of
user interactions (i.e. structure and appearance of interface elements) in their user
interface definitions. This hinders accessibility, since some group of users may prefer
some other interface structure or appearance not captured in these definitions. For
example, some blind users may prefer a user interface that allows them to issue simple
text commands to locate and open existing files in a Text Editor, instead of using screen
readers to navigate a user interface composed of a dialog box and containers (for listing
drives, directories, and files). This is due to the fact that screen readers will spend a lot
of time reading the containers and their contents (the drives, directories, and files), and
any other widgets in the dialog box. Certainly, this process will cause frustration for
blind users, since it will hinder them from performing their intended tasks quickly.

(3) It is very difficult to develop user interface generators that personalize user interfaces
for all users, considering the wide range of user abilities and the dynamism involved.
Users’ abilities change and new abilities are created with time; thus, the development
(and maintenance) cost and effort required to keep modifying these interface generators
to cater for new or changes in abilities will be very difficult to bear.

The first and third shortcomings are addressed by developing interface interpreters that fit
the abilities and needs of a variety of user groups (such as non-disabled users, blind users,
motor-impaired users, low-vision users, deaf users, and so on). The second issue is addressed
with our Interface Description File (IDF) which is not tied to any specific user interaction
pattern, and offers the benefit of being readable by any interface interpreter.

www.manaraa.com

Chapter 3

Quality Assurance on Johar

In this chapter, we extensively discuss our quality assurance process targeted towards the
detection and correction of inconsistencies, omissions, irrelevances, and other loopholes that
could hinder successful deployment of Johar.

The quality assurance process is aimed at improving the two core components of Johar
(i.e. johar.gem and johar.idf), as well as detecting and correcting flaws in the IDF Format
Specification document, IDF’s XML Schema document, and the Interface Interpreter
Specification document, which are all critical to the success of the Johar project. Furthermore,
error detection and reporting tests were carried out on IDFs via our automated testing tool
developed for this purpose.

3.1 Review and Redesign of Johar Components

There are two main components of Johar: johar.gem and johar.idf (see Section 1.1.4).
Since the current Johar implementation is in Java, these components are packages containing
several interrelated classes that facilitate the development of interface interpreters and apps.

3.1.1 The johar.gem package

The johar.gem package is responsible for the following activities:

(1) Invoking methods in the app engine;

(2) Communicating input data (i.e. commands, parameter values, and question responses
elicited by the user via the interface interpreter) to the app engine, and also
communicating output data from the app engine to the interface interpreter.

Figure 3.1 shows all the classes in the johar.gem package. GemSetting interfaces with
interface interpreters, while Gem interfaces with app engines. In other words, an interface

20

www.manaraa.com

3.1. Review and Redesign of Johar Components 21

interpreter sends user inputs to and receives output data from an app engine via GemSetting,
while the app engine receives user inputs from and sends output data to the interface interpreter
via Gem.

johar::GemBaseImplementation

johar::GemImplementation

«Interface»
johar::GemBase

«Interface»
johar::GemSetting

ApplicationEngine

johar::GemFullImplementation

InterfaceInterpreter

GemFullImplementation knows that it is
also a Gem, so it can pass itself to the
Application Engine.
ApplicationEngine just knows that it has a
Gem and therefore cannot use the services
offered by GemSetting.

johar::GemFactory

«Interface»
johar::Gem

InterfaceInterpreter can get a GemSetting
from GemFactory.
GemFactory knows it is returning a
GemFullImplementation, but
InterfaceInterpreter does not.
Therefore, InterfaceInterpreter cannot use
the services offered by Gem.

Figure 3.1: The Class Diagram of the johar.gem Package

The GemFullImplementation and GemImplementation are the brains behind the activities
of GemSetting and Gem respectively. Specifically, GemSetting forwards the commands,
parameter values, and question responses it received from the interface interpreter to
GemFullImplementation, which then invokes the appropriate method in the app engine for
computation to begin, and also makes the parameter values and question responses available
to GemImplementation for use by the app engine through Gem. Furthermore, Gem forwards
the table data or text it received from the app engine to GemImplementation, which then

www.manaraa.com

22 Chapter 3. Quality Assurance on Johar

makes the data accessible to GemFullImplementation for use by the interface interpreter
through GemSetting.

The Review Process

Our review of the 2009 version of johar.gem package is aimed at determining whether the
two activities outlined in subsection 3.1.1 are effectively carried out by the package. To achieve
this aim, we reviewed the functionality of all the classes in this package.

The outcome of our review revealed the critical shortcomings outlined below. Afterwards,
we explain the cause and effect of these shortcomings on the Johar project.

(1) GemSetting did not have the feature needed to automatically initialize all tables that are
supposed to hold table data coming from the app engine, when an interface interpreter is
started by the user.

(2) GemSetting did not have the feature needed to automatically validate all the app engine
methods used in an IDF against the actual methods in the app engine.

(3) GemFullImplementation was passive in determining which app engine method to invoke
or trigger for computation to begin. It relies on GemSetting to provide the method name,
which means GemSetting must get this information from the interface interpreter.

(4) GemFullImplementation did not validate each parameter value received from GemSetting

against the parameter type in the IDF. This means that GemFullImplementation could
accept an integer value for a parameter declared as float in the IDF.

These shortcomings occurred because the 2009 version of johar.gem package did not
access the IDF at all. As stated in chapter 1, the IDF provides information about the nature
of an app (such as app name, name of app engine, app engine methods that perform specific
functions, etc.), functionality or features available to users (such as commands, help facility,
table browsing, parameter selection, answering questions, etc.), and the type of data to be
exchanged between interface interpreters and the app (such as textual data, boolean values,
integer values, files, calendar date and time, etc.). Unfortunately, as important as these pieces
of information are, the 2009 version of johar.gem package had no knowledge of them.

The major effect or consequence of this knowledge gap is that the interface interpreter,
which has access to the content of an IDF, must bridge the gap by initializing all tables at
launch time, validating all app engine methods used in the IDF (which can only be achieved by
collaborating with GemSetting), informing GemSetting which app engine method to invoke in
order to perform specific task, and validating all parameter values against their corresponding

www.manaraa.com

3.1. Review and Redesign of Johar Components 23

types in the IDF. This means extra work for interface interpreter developers, since they will
have to worry about these issues, rather than focusing on developing quality ability-based user
interfaces. In addition, the performance of interface interpreters is reduced by these extra
checks and balances.

The Redesign Process

Our redesign process was aimed at restructuring the GemSetting and GemFullImplementation

classes in the 2009 version of johar.gem package such that they could make certain
decisions based on the content of IDFs without having to contact the interface interpreters for
information.

We added new methods and rewrote existing methods in GemFullImplementation so as to
address the shortcomings. These new and modified methods handle the following: initializing
the app engine and all tables mentioned in the IDF, validating all the app engine methods used
in an IDF against the actual methods in the app engine, automatically determining and invoking
app engine methods to perform specific tasks (e.g. invoking command methods specified in
the IDF, invoking methods to compute and retrieve default values for parameters, etc.), and
validating each parameter value against its type in the IDF. These methods are accessible to the
interface interpreter through GemSetting, and can be called when needed.

Thus, the interface interpreter developers can now focus majorly on the design of user
interfaces. Also, the performance of interface interpreters is improved, thereby boosting user
experience and satisfaction.

3.1.2 The johar.idf package

The johar.idf package provides access to the content of IDFs. Specifically, it is responsible
for the following tasks:

(1) Converting IDF to an XML document;

(2) Validating the XML document in (1) above using an XML Schema Document (XSD)
developed for this purpose;

(3) Checking for other constraints1 not captured in the XSD;

(4) Reading the IDF’s attribute instances contained in the validated XML document, and
making them available for external access.

1A summary of these other constraints is presented in subsection 3.3.2 of this chapter. The full details reside
in the IDF Format Specification document which will be found in Appendix A of this thesis.

www.manaraa.com

24 Chapter 3. Quality Assurance on Johar

The Review Process

Our review at this phase covers the structure of the 2009 version of johar.idf package, in
terms of how classes interrelate and how functions are allocated among the classes. The second
phase of this review was conducted in conjunction with three other documents, as discussed in
Section 3.2.

The outcome of our review revealed that only one class, called IDF, handled all the four
major tasks outlined in subsection 3.1.2 above. Considering the fact that attributes in an IDF are
structured in a tree-like manner (to showcase parent-child relationships among the attributes),
having a single class to read and provide access to an IDF’s content can obviously lead to code
duplication, as well as difficulty in debugging, managing, maintaining, and reusing codes.

The Redesign Process

We decided to split the single class into multiple and manageable classes each of which
performs a specific function and interacts with other classes. The class diagram in Figure 3.2
shows the new design of the johar.idf package.

The technique we used in creating the classes are as follows:

• For each attribute in the IDF that has sub-attributes (such as Table, Command,
CommandGroup, Stage, Parameter, and Question), a class was created to provide
access to that attribute and all its sub-attributes (including their respective values). The
resulting classes are IdfTable, IdfCommand, IdfCommandGroup, IdfStage,
IdfParameter, and IdfQuestion.

• The Idf class was created to convert an IDF document to an XML document, to validate
the XML document against the XSD, and to check for violations against certain
constraints specified in the IDF Format Specification document. In addition, the Idf

class retrieves information about top-level attributes in the IDF. This information is:
name of application, name of application engine, IDF version, application engine’s
initialization method, name of each command, name of each table, and name of each
command group.

• The IdfElement class was created to expose all the elements, attributes, and values in the
XML document. Thus, all other classes extract needed information from this class.

This new design makes the codes less error-prone, makes debugging easy, prevents code
duplication, and makes code maintenance easy.

www.manaraa.com

3.2. Review of Johar-related Documents for Consistency 25

0..n1
johar::IdfCommand

-commandName: String[1]
-activeIfMethod: String[0..1]
-commandMethod: String[1]
-label: String[1]
-briefHelp: String[1]
-oneLineHelp: String[1]
-multiLineHelp: String[1]
-prominence: int[1]
-quitAfter: boolean[1]
-quitAfterIfMethod: String[0..1]

johar::IdfStage

-parameterCheckMethod: String[0..1]

johar::IdfTable

-tableName: String[1]
-browsable: boolean[1]
-defaultHeading: String[1]
-defaultColumnNames: String[1]
-label: String[1]

johar::IdfCommandGroup

-member: String[1..*]
-commandGroupName: String[1]
-label: String[1]

0..n

1

johar::IdfElement

#domElement: Element[1]
#eh: ErrorHandler[1]
#elementKind: String[1]
#elementName: String[1] 0..n

1

0..n

1

1..n

 1

johar::Idf

-application: String[1]
-applicationEngine: String[1]
-idfVersion: String[1]
-initializationMethod: String[1]

0..n

1

johar::IdfQuestion

-askIfMethod: String[1]

johar::IdfParameter

-parameterName: String[1]
-type: String[1]
-choices: String[0..1]
-defaultValue: String[1]
-defaultValueMethod: String[0..1]
-fileConstraint: String[0..1]
-repsModel: String[1]
-label: String[1]
...

Figure 3.2: The Class Diagram of the johar.idf Package

3.2 Review of Johar-related Documents for Consistency

In furtherance of our quality assurance activity, we reviewed the following important
documents for consistency. We conducted this review in March 2013. The latest version of
the first three documents will be found in Appendix B, A, and C of this thesis respectively.

• Interface Interpreter Specification document: specifies the general behaviour of all
interface interpreters.

• IDF Format Specification document: defines the syntax and semantics of all the
attributes an IDF can contain, including the constraints on attributes and values.

• XML Schema document (XSD): used for validating the XML equivalent of an IDF.

• johar.idf package: provides access to the content (i.e. attributes and their values) of
an IDF.

www.manaraa.com

26 Chapter 3. Quality Assurance on Johar

The last three documents are obviously related (since they involve specifying, validating, and
exposing the content of IDFs). The first document (i.e. Interface Interpreter Specification
document) is also related to other documents, since each interface interpreter accepts an IDF
as input. Hence, all these documents must be consistent or harmonious with one another.

Following standard practices in software specification, each of the documents was mostly
made up of short numbered paragraphs. The aim of this review is to verify whether every
sentence in the IDF Format Specification document is traceable to some requirements or code in
one of the other documents. Thus, we worked through each document paragraph by paragraph,
and took note of every sentence (including the section number and the attribute concerned) in
the IDF Format Specification document that cannot be traced to some requirements or code in
one of the other documents.

Table 3.1 shows part of the results of our review process. The full results can be found in
Appendix D of this thesis. For clarity, classes in the johar.idf package and the XML Schema
Document (johar.xsd) are italicized in the table, while attributes are printed in Typewriter
font.

Section Attribute Sentence Violation
2.1 InitializationMethod The name of the

application engine
method used to
initialize the engine.

This attribute is not
available in current
johar.xsd version, and
not captured in Idf.

2.2 Prominence Default value: 2000 Default value specified
in IdfCommand is
1000.

2.4 FileConstraint Multiplicity: For
parameters of type file,
0 or 1.

In IdfParameter, the
multiplicity specified is
1.

Table 3.1: Some results of the review of Johar-related documents for consistency

The first row of Table 3.1 specifies that the InitializationMethod attribute, which was
defined in Section 2.1 of the IDF Format Specification document, was not implemented in
both the XML Schema document (johar.xsd) and the Idf class of johar.idf package. The
implication of this omission is that whenever the Idf class attempts to validate the XML
equivalent of an IDF containing the InitializationMethod attribute, an error occurs since
InitializationMethod is never captured in johar.xsd. In addition, since the Idf class is
meant to provide information about an app engine’s initialization method (which is the value

www.manaraa.com

3.3. Test Infrastructure for IDFs 27

of the InitializationMethod attribute in the IDF) when requested by the
GemFullImplementation class of johar.gem package, it becomes impossible for
GemFullImplementation to successfully initialize the app engine whenever an interface
interpreter is launched by the user.

As shown in Appendix D of this thesis, a total of 24 consistency violations were reported,
with 4 additional consistency-related observations. Sections 2.1 to 2.7 in the IDF Format
Specification document were the problematic sections, with section 2.4 (titled “Sub-Attributes
of Parameter”) having the highest number of consistency violations. We addressed all
consistency violations by effecting appropriate changes in the documents concerned. For
example, the first consistency violation in Table 3.1 occurred in the Idf class of johar.idf
package and the XML Schema document (i.e. johar.xsd); in this case, we inserted some code
into the Idf class to capture the missing InitializationMethod attribute and also added a
schema element for the InitializationMethod attribute in johar.xsd. In addition, since the
value of InitializationMethod attribute is needed to initialize an app engine, we added a
method call (through which the attribute’s value can be retrieved from the Idf class) to the
GemFullImplementation class of johar.gem package.

Thus, the results of this review assisted us in fixing code-related issues in the Johar
packages, modifying and/or adding requirements to the IDF Format and Interface Interpreter
Specification documents, as well as fixing omissions and bugs in the XML Schema document.

3.3 Test Infrastructure for IDFs

Although we have manually identified and fixed various IDF-related issues during our review
processes, we still need to answer the following question:

• Given any IDF, can Johar detect and report all the invalid entries in it?

Answering the question above requires correctly providing answers to the following questions:

• Is the IDF correctly transformed to an XML document?

• Is the XML Schema Document (XSD) accurately validating IDFs?

• Are other constraints not captured in the XSD checked by relevant classes in johar.idf
package in order to detect and report violations?

Even though we can guarantee that Johar detects, flags invalid entries (such as invalid
attributes, wrong attribute values, omission or wrong placement of vital special characters,
etc.) as errors, and provides detailed error reports or messages, we cannot ascertain that “all”

www.manaraa.com

28 Chapter 3. Quality Assurance on Johar

errors are detected and reported. This issue prompted us to develop an automated testing tool
which accepts an annotated IDF as input, automatically generates many test cases from the
IDF, runs all the test cases, and then produces error reports with which accurate decisions
(such as answering all the questions above) can be made.

Application = ContactsManager //Required
ApplicationEngine = ContactsManager //Optional
IdfVersion = "1.0" //Required
InitializationMethod = initContactsManager //Optional

CommandGroup contacts = {
Member = addContact //Required

}
Command addContact = {

BriefHelp = "Adds a New Contact" //Optional
Stage contactProfile = {

Parameter fullName = {
Type = text //Required
MaxNumberOfChars = 0 //Forbidden
Label = "Name (Last, First)" //Optional

}
Parameter age = {

Type = int //Required
MinValue = 18 //Optional
MaxValue = 15 //Forbidden

}
ParameterCheckMethod = checkInputValues //Optional

}
Question addContactQuestion = {

Type = boolean //Required
Label = "Continue with adding contact?" //Optional
AskIfMethod = confirmAddAction //Required

}
}

Figure 3.3: A sample annotated IDF for generating test cases

3.3.1 Generating Test Cases

The test cases are generated automatically from an annotated IDF. By “annotated” we mean
appending a comment to each attribute instance in the IDF. Each comment is preceded with a
“//” followed by the text “Optional”, “Required”, or “Forbidden”. The “//Optional” and
“//Required” comments are used to identify optional and required attribute instances in the
IDF, as defined in the IDF Format Specification document. The “//Forbidden” comment, on

www.manaraa.com

3.3. Test Infrastructure for IDFs 29

the contrary, is used to identify attribute instances or entries in the IDF that violate some
requirements or constraints in the IDF Format Specification document. A sample annotated
IDF is shown in Figure 3.3.

Our test objective is to generate many valid and invalid test cases from the annotated IDF,
and then observing the results after running them. Under normal circumstances, the valid test
cases should not produce any error, while each invalid test case should produce only one error
(or related errors in some cases). Thus, a valid test case that produces an error is a failed test

case; similarly, an invalid test case that does not produce an error is a failed test case. However,
failed test cases are very important to us because they reveal bugs in the johar.idf package
or the XML Schema Document (XSD), or faults in the IDF Format Specification document.

Furthermore, we grouped our test cases into three test suites - TS 1, TS 2, and TS 3. TS 1
contains valid test cases, while TS 2 and TS 3 each contains invalid test cases.

Procedure for Generating Valid Test Cases in TS 1

(1) Generate each valid test case by deleting all the Forbidden attribute instances and one
Optional attribute instance from the annotated IDF;

(2) Delete all comments or annotations from the test cases.

Figures 3.4 and 3.5 show two test cases in TS 1, generated from the annotated IDF in Figure
3.3. In Test Case 1, the first Optional attribute instance (i.e. ApplicationEngine =
ContactsManager) and all Forbidden instances were deleted from the annotated IDF; while
in Test Case 2, the second Optional attribute instance (i.e. InitializationMethod =
initContactsManager) and all Forbidden instances were deleted. Five other test cases can
be generated by deleting one of the remaining Optional attribute instances (and all Forbidden

instances) for each test case. The procedure for generating test cases for each test suite is
given below.

Procedure for Generating Invalid Test Cases in TS 2

(1) Generate each invalid test case by deleting all the Forbidden attribute instances and one
Required attribute instance from the annotated IDF;

(2) Delete all comments or annotations from the test cases.

Figures 3.6 and 3.7 show two test cases in TS 2, generated from the annotated IDF in Figure 3.3.
In Test Case 1, the first Required attribute instance (i.e. Application = ContactsManager)
and all Forbidden instances were deleted from the annotated IDF; while in Test Case 2, the

www.manaraa.com

30 Chapter 3. Quality Assurance on Johar

Application = ContactsManager
IdfVersion = "1.0"
InitializationMethod = initContactsManager

CommandGroup contacts = {
Member = addContact

}
Command addContact = {

BriefHelp = "Adds a New Contact"
Stage contactProfile = {

Parameter fullName = {
Type = text
Label = "Name (Last, First)"

}
Parameter age = {

Type = int
MinValue = 18

}
ParameterCheckMethod = checkInputValues

}
Question addContactQuestion = {

Type = boolean
Label = "Continue with adding contact?"
AskIfMethod = confirmAddAction

}
}

Figure 3.4: Test Case 1 in TS 1

www.manaraa.com

3.3. Test Infrastructure for IDFs 31

Application = ContactsManager
ApplicationEngine = ContactsManager
IdfVersion = "1.0"

CommandGroup contacts = {
Member = addContact

}
Command addContact = {

BriefHelp = "Adds a New Contact"
Stage contactProfile = {

Parameter fullName = {
Type = text
Label = "Name (Last, First)"

}
Parameter age = {

Type = int
MinValue = 18

}
ParameterCheckMethod = checkInputValues

}
Question addContactQuestion = {

Type = boolean
Label = "Continue with adding contact?"
AskIfMethod = confirmAddAction

}
}

Figure 3.5: Test Case 2 in TS 1

www.manaraa.com

32 Chapter 3. Quality Assurance on Johar

ApplicationEngine = ContactsManager
IdfVersion = "1.0"
InitializationMethod = initContactsManager

CommandGroup contacts = {
Member = addContact

}
Command addContact = {

BriefHelp = "Adds a New Contact"
Stage contactProfile = {

Parameter fullName = {
Type = text
Label = "Name (Last, First)"

}
Parameter age = {

Type = int
MinValue = 18

}
ParameterCheckMethod = checkInputValues

}
Question addContactQuestion = {

Type = boolean
Label = "Continue with adding contact?"
AskIfMethod = confirmAddAction

}
}

Figure 3.6: Test Case 1 in TS 2

second Required attribute instance (i.e. IdfVersion = "1.0") and all Forbidden instances
were deleted. Five other test cases can be generated by deleting one of the remaining Required

attribute instances (and all Forbidden instances) for each test case.

Procedure for Generating Invalid Test Cases in TS 3

(1) Generate each invalid test case by deleting all but one Forbidden attribute instance from
the annotated IDF. In other words, if there are n Forbidden attribute instances in the
annotated IDF, then delete n-1 Forbidden attribute instances for each test case;

(2) Delete all comments or annotations from the test cases.

Figures 3.8 and 3.9 show two test cases in TS 3, generated from the annotated IDF in Figure 3.3.
In Test Case 1, the first Forbidden attribute instance (i.e. MaxNumberOfChars = 0) was not

www.manaraa.com

3.3. Test Infrastructure for IDFs 33

Application = ContactsManager
ApplicationEngine = ContactsManager
InitializationMethod = initContactsManager

CommandGroup contacts = {
Member = addContact

}
Command addContact = {

BriefHelp = "Adds a New Contact"
Stage contactProfile = {

Parameter fullName = {
Type = text
Label = "Name (Last, First)"

}
Parameter age = {

Type = int
MinValue = 18

}
ParameterCheckMethod = checkInputValues

}
Question addContactQuestion = {

Type = boolean
Label = "Continue with adding contact?"
AskIfMethod = confirmAddAction

}
}

Figure 3.7: Test Case 2 in TS 2

www.manaraa.com

34 Chapter 3. Quality Assurance on Johar

deleted, but all other Forbidden attribute instances were deleted from the annotated IDF; while
in Test Case 2, the second Forbidden attribute instance (i.e. MaxValue = 15) was not deleted
but all other Forbidden attribute instances were deleted. Note that the first of these attribute
instances is marked as “Forbidden” because the expected value of MaxNumberOfChars must
be greater than or equal to 1, and that the second is marked as “Forbidden” because MaxValue
must not be less than MinValue (as stated in the IDF Format Specification document).

Application = ContactsManager
ApplicationEngine = ContactsManager
IdfVersion = "1.0"
InitializationMethod = initContactsManager

CommandGroup contacts = {
Member = addContact

}
Command addContact = {

BriefHelp = "Adds a New Contact"
Stage contactProfile = {

Parameter fullName = {
Type = text
MaxNumberOfChars = 0
Label = "Name (Last, First)"

}
Parameter age = {

Type = int
MinValue = 18

}
ParameterCheckMethod = checkInputValues

}
Question addContactQuestion = {

Type = boolean
Label = "Continue with adding contact?"
AskIfMethod = confirmAddAction

}
}

Figure 3.8: Test Case 1 in TS 3

www.manaraa.com

3.3. Test Infrastructure for IDFs 35

Application = ContactsManager
ApplicationEngine = ContactsManager
IdfVersion = "1.0"
InitializationMethod = initContactsManager

CommandGroup contacts = {
Member = addContact

}
Command addContact = {

BriefHelp = "Adds a New Contact"
Stage contactProfile = {

Parameter fullName = {
Type = text
Label = "Name (Last, First)"

}
Parameter age = {

Type = int
MinValue = 18
MaxValue = 15

}
ParameterCheckMethod = checkInputValues

}
Question addContactQuestion = {

Type = boolean
Label = "Continue with adding contact?"
AskIfMethod = confirmAddAction

}
}

Figure 3.9: Test Case 2 in TS 3

3.3.2 Running the Test Cases

As shown in Figure 3.10, the automated testing tool (which is written in Java) runs the test
cases, and generates an error log for each test case, as well as a summary report of the tests.
The Execution module of the automated testing tool runs each test case using the algorithm
below:

For each test suite

For each test case in test suite

Convert test case to XML document

Validate XML document against the XSD

Check for violations against other constraints

Generate Error Log

www.manaraa.com

36 Chapter 3. Quality Assurance on Johar

Next

Next

The automated testing tool interacts with the johar.idf package for the purpose of generating
and validating each XML document against the XSD, including checking for violations against
certain constraints. These constraints are defined in the IDF Format Specification document,
and are summarized below:

• Both the minimum value and maximum value of certain attributes must be within
specified thresholds, and the minimum value must be less or equal to the maximum
value;

• A source table must be provided for parameters of type tableEntry;

• All command and parameter names must be unique;

• All help messages must not exceed a particular length;

• A command must belong to only one command group;

• The minimum and maximum number of occurrence of certain attributes (especially
attributes with no sub-attributes) must not be exceeded.

3.3.3 Interpreting the Test Results

The expected test results are the Error Log for each test case, and the Summary Report.

The Error Log

The Error Log is a text file containing error reports generated while running each test case. The
Error Log’s content is structured into three parts:

(1) Action Taken on the Annotated IDF: This part describes the attribute instance(s) removed
from the annotated IDF to form the test case. We used this information to determine
whether the error(s) detected (and reported) were in agreement with what we expected.

(2) IDF to XML Conversion Errors: This part contains all the errors that occurred while
converting the test case to an XML document. We used this error report to locate and
correct bugs in the IDF to XML conversion module.

www.manaraa.com

3.3. Test Infrastructure for IDFs 37

Test Case 1

Test Case 2

.

.

Test Case n

TS 1

Test Case 1

Test Case 2

.

.

Test Case n

Automated Testing Tool

Error Logs Summary Report

Annotated IDF

Test Case 1

Test Case 2

.

.

Test Case n

TS 2 TS 3

Execution Module

Generate Error Log

for each test case

johar.idf package

 Convert Test Case to XML document

 Validate the XML document against

the XSD

 Check for violations against other

constraints

Test Case

Error report

Figure 3.10: Architecture of the Automated Testing Tool

www.manaraa.com

38 Chapter 3. Quality Assurance on Johar

(3) Errors detected in the Test Case: This part contains all XML validation errors
(produced while checking the XML document against the XSD), and violations against
other constraints specified in the IDF Format Specification document. These errors are
linked to invalid entries in the test case. We used this error report to determine whether
all the invalid entries in the test case were detected and reported.

The error logs for the test cases in Figures 3.4 and 3.6 are shown in Figures 3.11 and 3.12
respectively.

Figure 3.11: Error Log for Test Case 1 in TS 1. [No error is detected]

Figure 3.12: Error Log for Test Case 1 in TS 2. [An error is detected]

www.manaraa.com

3.3. Test Infrastructure for IDFs 39

The Summary Report

The summary report, shown in Figure 3.13, presents the overall test result at a glance. From
this report, we can easily determine the total number of test cases generated, the number of test
cases that passed or failed, and the test cases that failed (if any) for each test suite.

Figure 3.13: Summary Report of the tests

Determining test cases that passed or failed
Recall from subsection 3.3.1 that TS 1 contains valid test cases which should not produce error
when executed; while TS 2 and TS 3 both contain invalid test cases that should each produce
only one error (or related errors in some cases) when executed. Thus, we determine passed and
failed test cases as follows:

• For each test case in TS 1,

If test case’s error log contains no error, then

Flag test case as "Passed"

Otherwise,

Flag test case as "Failed"

Next

• For each test case in TS 2,

If test case’s error log contains no error, then

Flag test case as "Failed"

www.manaraa.com

40 Chapter 3. Quality Assurance on Johar

Otherwise,

Flag test case as "Passed"

Next

• For each test case in TS 3,

If test case’s error log contains no error, then

Flag test case as "Failed"

Otherwise,

Flag test case as "Passed"

Next

For example, the valid test cases in Figures 3.4 and 3.5 passed because their error logs (one of
which is shown in Figure 3.11) contain no error message. Moreover, the invalid test cases in
Figures 3.6, 3.7, 3.8, and 3.9 also passed since their error logs (one of which is shown in
Figure 3.12) each contain an error message.

In conclusion, Figure 3.13 is a demonstration of the automated testing tool. The testing tool
accepts the annotated IDF in Figure 3.3 as input, and then proceeds to generate and validate
the valid and invalid test cases. The summary report shows that 7 valid test cases are in TS 1
(two of which are shown in Figures 3.4 and 3.5), 7 invalid test cases are in TS 2 (two of which
are shown in Figures 3.6 and 3.7), and 2 invalid test cases are in TS 3 (as shown in Figures 3.8
and 3.9). The report further reveals that all the test cases in TS 1, TS 2, and TS 3 passed the
tests.

In order to achieve our test objective which is to determine whether all errors in an IDF
are detected and reported, we wrote different annotated IDFs and fed each of them to the
automated testing tool as input. Prior to commencing the tests, we checked the annotated IDFs
to make sure that they (collectively) cover all the attributes an IDF can contain, as defined in
the IDF Format Specification document. After running all the test cases generated from the
annotated IDFs, the automated testing tool revealed several failed test cases. The Error Log of
each failed test case contained between 1 to 10 faults (or errors) which are linked to bugs in
the johar.idf package and/or the XML Schema document (johar.xsd). We resolved all the
bugs and repeated the tests to verify whether all the test cases would pass. As expected, all the
test cases passed.

The latest source files of the Johar framework are available in our online repository 2.

2https://github.com/jamieandrews/johar-git

www.manaraa.com

Chapter 4

The Star Interface Interpreter

In this chapter, we discuss a new interface interpreter which is based on the new version of
Johar. This interface interpreter is called Star, and its overall purpose is to present WIMP
(Windows, Icons, Menus, and Pointers) graphical user interfaces to users. Star supports most
of the common interaction styles evident in GUIs, such as menu selection, data entry and
selection, table browsing, wizard-style interaction, customization of widgets (i.e. addition,
rearrangement and deletion of widgets), and so on.
Star itself is not an accessible application, but a means through which application

developers present their apps to users. Most application developers will preview and test their
apps using Star in order to ascertain that their apps are working as expected and that all
functionality or features have been implemented. Thus, successful development of Star is
very important to the overall success of the Johar project. We therefore focused on Star as
the interface interpreter with the highest priority for implementation. Other interface
interpreters, including prototypes providing accessibility to some groups of disabled users,
will be discussed in Chapter 5.

This chapter covers the specification and design of Star, as well as its implementation and
demonstration.

4.1 Requirements Specification of Star GUI

In this section, we describe the features available in a Star graphical user interface. A more
technical description of these features is presented in the Star GUI Specification document1.

1Available in Appendix E of this thesis.

41

www.manaraa.com

42 Chapter 4. The Star Interface Interpreter

4.1.1 The Main Panel

The Main Panel, in Figure 4.1, is displayed when the user launches an application using Star.
It encompasses four components: the Menu Bar, Text Display Area, Table Area, and the Status
Bar.

The Menu Bar

The Menu Bar contains application menus labelled with the names of command groups in the
IDF. Each menu consists of menu items labelled with the names of commands in the IDF.
Thus, these menu items are the commands through which the user can specify his/her intent.
For example, the user can specify his/her intent to print the current document by selecting the
“Print” menu item. Furthermore, the Menu Bar has a special menu, called Star, whose menu
items represent services provided by the Star interface interpreter for all Johar applications
(e.g. Help is a menu item under the Star menu).

Area

Menu Bar

Status Bar

Table
AreaDisplay

Text

Figure 4.1: The Main Panel of Star GUI

The Text Display Area

This is a scrollable text widget that displays textual data requested by the user, and/or textual
data representing the output of a computation. The Text Display Area also displays
notifications sent from the application engine. The contents of the Text Display Area are

www.manaraa.com

4.1. Requirements Specification of Star GUI 43

separated from one another via a horizontal line appended to each message or data. The Text
Display Area is located to the left of the Table Area under the Menu Bar.

The Table Area

This is a scrollable widget that displays browsable tables, which are populated with data by
the application engine, and whose rows are selectable by the user. The Table Area has tabs,
one for each table. Selected rows of data are values of parameters of type tableEntry whose
source table is the table containing the selected rows. Thus, the selected rows can be given to
a command as input values for use by the application engine during computation. For
example, suppose the Table Area contains an Appointment table where each row represents an
appointment; a user can select an appointment from the table, and then select the “Cancel
Appointment” command to cancel that appointment.

The Status Bar

The Status Bar usually displays short messages indicating the completion of an operation
and/or simple success and failure information. It can also be used to display any low-priority
message to the user. The Status Bar is located at the bottom of the Main Panel.

4.1.2 The Command Dialog Box

The Command Dialog Box in Figure 4.2 is displayed when the user selects a menu item or
command under an application menu. The Command Dialog Box contains a section for each
parameter of the command, as specified in the IDF.

Each parameter section contains one of the various data entry widgets, depending on the
parameter type (which can be either text, boolean, int, float, choice, file, date, or
timeOfDay). Moreover, each parameter section is located in a particular stage of the Command
Dialog Box, depending on which stage of the command the parameter belongs to in the IDF. In
other words, if a parameter belongs to the second stage of the selected command (as specified in
the IDF), then the data entry widget for that parameter will be placed in the second stage of the
Command Dialog Box. Thus, the Command Dialog Box is structured like a Wizard, where the
user can navigate from one stage to another using the “Previous” and “Next” buttons. These
two buttons are shown automatically if the selected command has more than one stage, but
hidden if only one stage exists. Furthermore, the user can prematurely terminate the command
by clicking the “Cancel” button, or complete his/her task by clicking the “OK” button.

www.manaraa.com

44 Chapter 4. The Star Interface Interpreter

button

Label of command

Section for this stage’s 1st parameter

Cancel Next OKPrevious

...

Section for this stage’s last parameter

Section for this stage’s 2nd parameter

Section for this stage’s 3rd parameter

Cancel Previous Next OK
button button button

Figure 4.2: The Command Dialog Box of Star GUI

The Parameter Section of the Command Dialog Box

The parameter section of the Command Dialog Box, shown in Figure 4.3, contains the
parameter’s label (as specified in the IDF) and the data entry widget for the parameter. Based
on the number of repetitions specified in the IDF for the parameter, there can be more than
one data entry widget. Examples of data entry widgets include text boxes and drop-down
menus. Also, based on the minimum number of repetitions specified in the IDF, some data
entry widgets may be visible at first, but more can be added by clicking the “+” button. The
user is allowed to delete each unwanted widget down to the minimum number of repetitions
(by clicking the “X” button), and allowed to add more widgets up to the maximum number of
repetitions (as specified in the IDF).

www.manaraa.com

4.1. Requirements Specification of Star GUI 45

Label of parameter

followed by colon (:)

1
st
 Repetition Widget

2
nd

 Repetition Widget

3
rd

 Repetition Widget

4
th

 Repetition Widget

Add Another button

Move Up button

Move Down button

Delete button

Figure 4.3: The Parameter Section of the Command Dialog Box

Finally, if parameter values are to follow a particular order, the user is allowed to rearrange
the widgets accordingly by clicking the “∧” and “∨” buttons.

4.1.3 The Question Dialog Box

The Question Dialog Box, shown in Figure 4.4, is used to ask questions. It is composed
of the question’s label (as specified in the IDF), a widget for supplying value in response to
the question, an “OK” button, and a “Cancel” button. The “OK” button confirms the user’s
response, while the “Cancel” button discards the question.

Label of question

OK

OK
button

Cancel

Cancel
button

Parameter occurrence selection widget

Figure 4.4: The Question Dialog Box of Star GUI

www.manaraa.com

46 Chapter 4. The Star Interface Interpreter

4.1.4 The Help Box

When the user selects Help under the Star menu, the Help Box is displayed. As shown in
Figures 4.5, 4.6, 4.7, the Help Box has three states: the Top-Level state, the Command state,
and the Parameter/Question state.

The Top-Level State of the Help Box shows the OneLineHelp for each command, as
specified in the IDF2. The Command State of the Help Box shows the detailed help
information (or MultiLineHelp3) for the command selected in the Top-Level State. In
addition, the Command State shows the OneLineHelp for each parameter and question of the
command4. The Parameter/Question State of the Help Box shows the MultiLineHelp for the
parameter or question selected in the Command State.

Commands

OK

...

OK
button

Label for command 1

Label for command 2

Label for command 3

Label for command n

OneLineHelp for command 1

OneLineHelp for command 2

OneLineHelp for command 3

OneLineHelp for command n

Figure 4.5: The Help Box of Star GUI [Top-Level State]

2The Label or BriefHelp of the command is displayed if there is no OneLineHelp specified for that
command.

3The Label, BriefHelp, or OneLineHelp of the command is displayed if there is no MultiLineHelp for
that command in the IDF.

4The Label or BriefHelp of the parameter/question is displayed if there is no OneLineHelp for that
parameter/question in the IDF.

www.manaraa.com

4.1. Requirements Specification of Star GUI 47

...

OK

OK
buttonbutton

Back

Back

Label of command group Label of command

MultiLineHelp for command

Label for param 1 OneLineHelp for param 1

Label for param 2 OneLineHelp for param 2

...
Label for param n OneLineHelp for param n

Questions that might be asked:

Label for question 1

Label for question 2

Label for question m

OneLineHelp for question 1

OneLineHelp for question 2

OneLineHelp for question m

Figure 4.6: The Help Box of Star GUI [Command State]

MultiLineHelp for parameter

button

Back

Back

OK

OK
button

Label of command group Label of command

Parameter: Label of parameter

Figure 4.7: The Help Box of Star GUI [Parameter/Question State]

www.manaraa.com

48 Chapter 4. The Star Interface Interpreter

4.1.5 The Message Dialog Box

The Message Dialog Box, shown in Figure 4.8, is used to show high priority messages to the
user. Such high priority messages can be error messages or other important information the
user must know about.

 Title

High Priority Message

OK

OK button

Figure 4.8: The Message Dialog Box of Star GUI

4.2 Design of Star

The Star interface interpreter is composed of many interrelated components or classes. In
this section, we describe the key components of Star, including their respective functions and
relationships.

4.2.1 Components of Star

The key components or classes of Star and the relationship among them are depicted in Figure
4.9.

Whenever the user launches an application (or app) through the Star interface interpreter,
the Star class

(1) reads the IDF written for the app;

(2) creates the GemSetting object that provides access to the app engine;

(3) uses the GemSetting object to validate all app engine methods specified in the IDF;

(4) uses the GemSetting object to invoke the app engine’s initialization method for initial
computation or setup;

www.manaraa.com

4.2. Design of Star 49

(5) initializes all tables through the GemSetting object; and finally

(6) loads the Main Panel of the GUI, if the previous tasks are successful.

The StarWindow class creates the Main Panel, which is composed of one or more Menus, a
Text Display Area, a Status Bar, and a Table Area. Each Menu is composed of one or more
menu items (or commands). The Table Area is composed of zero or more Table Widgets, each
of which is populated with data through the BrowsableTableModel class.

Furthermore, the CommandController class receives, interprets, and responds to events
generated by the user, as he/she interacts with the widgets. In the Star GUI, events are
generated when the user clicks a menu item (or command), clicks a button (in the Command
Dialog Box, Question Dialog Box, or Help Box), or selects row(s) in a table. For example,
whenever the user clicks a menu item or command, a CommandMenuItemClicked event is
raised, received, and interpreted by the CommandController class. It then responds by loading
and displaying a Command Dialog Box for the selected command. Moreover, the
CommandController class collects parameter values and question responses supplied by the
user, validates them against data constraints specified in the IDF, and then sends them to the
app engine via the GemSetting object.

The CommandDialog class creates the Command Dialog Box, which is composed of one
or more stages, each of which is composed of one or more parameter widgets. The parameter
widgets are used for supplying values for parameters. Depending on the type and the number of
repetitions specified for each parameter in the IDF, each parameter widget is composed of zero
or more of either Boolean Widget, Choice Widget, File Widget, Date Widget, Number Widget,
Text Widget, Time Widget, or Table Entry Widget. As the name suggests, the Table Entry
Widget is used for parameters of type tableEntry, but the specified source table must be
non-browsable5. Thus, Table Entry Widgets display contents of non-browsable tables, which
are populated with data via the NonBrowsableTableModel class.

Finally, the QuestionDialog class creates the Question Dialog Box, which is composed of
only one parameter widget; the HelpBox class creates the Help Box; and the MessageDialog

class creates the Message Dialog Box.

5The user cannot browse data nor select rows from a non-browsable table; hence, it is not visible in the Table
Area.

www.manaraa.com

50 Chapter 4. The Star Interface Interpreter

1 1

loads

1

1

1

1..n

uses

1

0..n

1

0..n

1

0..n

1

0..n

1

0..n

1

0..n

1

0..n

1

0..n

TimeWidgetTextWidget TableEntryWidgetNumberWidget

NonBrowsableTableModel

FileWidget DateWidgetChoiceWidgetBooleanWidget

1 1..n

1

1..n

ParameterWidgetStageWidget

1

1..n

1

0..n

Star

111

1

1..n

1

1..n

1

1..n

11..n 1 1..n

HelpBoxQuestionDialog

CommandController

1..n

1

uses

BrowsableTableModelCommandDialog

1

1..n

TextDisplayArea StatusBar

TableWidget

TableArea

StarWindow

CommandMenuItem

CommandMenu

Figure 4.9: The Class Diagram showing the key components of Star and the relationship
among them

4.3 Implementation and Demonstration of Star

The Star interface interpreter is implemented in Java. All the graphical interface elements,
described in Sections 4.1 and 4.2 above, were created by extending appropriate classes in the
Java Swing API [50], such as JFrame, JDialog, JMenuBar, JMenu, JMenuItem, JTable,
JTabbedPane, JSplitPane, JPanel, JScrollPane, JTextArea, JButton, JComboBox, JTextField,
JFormattedTextField, and several others. For example, the StarWindow class extends JFrame

to create a window-like interface (having a title bar with minimize, maximize, and close
buttons), both CommandDialog and QuestionDialog classes extend JDialog to create

www.manaraa.com

4.3. Implementation and Demonstration of Star 51

application-modal dialog boxes6, the TableWidget extends JTable to create a table, and so on.
Furthermore, all the events generated during user-app interaction were created by

implementing appropriate interfaces in the Java AWT Events API [51], such as
WindowListener, ActionListener, ComponentListener, and MouseMotionListener. For
example, the StarWindow class implements ComponentListener to generate events whenever
the user changes the size of the Main Panel, both CommandDialog and QuestionDialog
classes implement WindowListener to generate events whenever the user selects any widget in
the dialog boxes, and so on. The functions of the Star components were implemented in
accordance to the Star Behaviour Specification7. The source code of some of the Star
components will be found in Appendix G of this thesis.

Having implemented Star, we proceeded to perform a live test by interacting with two
apps using Star as the interface interpreter that suits our ability and needs. The two apps are
Temperature Converter and Appointment Calendar.

Interacting with the Temperature Converter App

The Temperature Converter app helps in converting temperatures measured in Fahrenheit to
Celsius, and vice-versa. The IDF, and its XML equivalent, for the app are shown in Figure
4.10 and Figure 4.11 respectively.

From the IDF, the app has three commands. The first command, celsiusToFahrenheit,
converts temperatures in Celsius to Fahrenheit. It has only one stage, which contains a
parameter for accepting temperature in Celsius. The second command,
fahrenheitToCelsius, converts temperatures in Fahrenheit to Celsius. It also has only one
stage, which contains a parameter for accepting temperature in Fahrenheit. Lastly, the third
command, exitApp, is meant for closing the app when the user is done. However, it asks the
user to confirm his or her intent to terminate the app by presenting an “are you sure” question.
These three commands are members of a command group, called convert.

6When an application-modal dialog box is displayed, other parts of the user interface are frozen until the user
finishes with the dialog box and closes it.

7Available in Appendix F of this thesis.

www.manaraa.com

52 Chapter 4. The Star Interface Interpreter

Application = TemperatureConverter
ApplicationEngine = TemperatureConverter
IdfVersion = "1.0"
InitializationMethod = initTemperatureConverter

CommandGroup convert = {
Member = celsiusToFahrenheit
Member = fahrenheitToCelsius
Member = exitApp

}

Command celsiusToFahrenheit = {
BriefHelp = "Converts Celsius to Fahrenheit"
MultiLineHelp = "Use this command to convert temperatures measured in Celsius to
temperatures measured in Fahrenheit."
Stage conversion = {

Parameter celsius = {
Type = float
Label = "Temperature in Celsius"
OneLineHelp = "Supply your temperature in Celsius (not Fahrenheit)"

}
}
CommandMethod = celsiusToFahrenheit

}

Command fahrenheitToCelsius = {
BriefHelp = "Converts Fahrenheit to Celsius"
MultiLineHelp = "Use this command to convert temperatures measured in Fahrenheit
to temperatures measured in Celsius."
Parameter fahrenheit = {

Type = float
Label = "Temperature in Fahrenheit"
OneLineHelp = "Supply your temperature in Fahrenheit (not Celsius)"

}
}

Command exitApp = {
Label = "Exit"
OneLineHelp = "Exits the Temperature Converter App"
Question confirmExit = {

Type = boolean
Label = "Are you sure you want to exit?"
OneLineHelp = "Confirms your intent to exit the app."
AskIfMethod = confirmAppExit

}
QuitAfterIfMethod = appShouldQuit

}

Figure 4.10: IDF for the Temperature Converter App

www.manaraa.com

4.3. Implementation and Demonstration of Star 53

<Johar xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<Application>TemperatureConverter</Application>
<ApplicationEngine>TemperatureConverter</ApplicationEngine>
<IdfVersion>1.0</IdfVersion>
<InitializationMethod>initTemperatureConverter</InitializationMethod>
<CommandGroup name="convert">
<Member>celsiusToFahrenheit</Member>
<Member>fahrenheitToCelsius</Member>
<Member>exitApp</Member>

</CommandGroup>
<Command name="celsiusToFahrenheit">
<BriefHelp>Converts Celsius to Fahrenheit</BriefHelp>
<MultiLineHelp>Use this command to convert temperatures measured in Celsius

to temperatures measured in Fahrenheit.</MultiLineHelp>
<Stage name="conversion">
<Parameter name="celsius">
<Type>float</Type>
<Label>Temperature in Celsius</Label>
<OneLineHelp>Supply your temperature in Celsius (not

Fahrenheit)</OneLineHelp>
</Parameter>

</Stage>
<CommandMethod>celsiusToFahrenheit</CommandMethod>

</Command>
<Command name="fahrenheitToCelsius">
<BriefHelp>Converts Fahrenheit to Celsius</BriefHelp>
<MultiLineHelp>Use this command to convert temperatures measured in

Fahrenheit to temperatures measured in Celsius.</MultiLineHelp>
<Parameter name="fahrenheit">
<Type>float</Type>
<Label>Temperature in Fahrenheit</Label>
<OneLineHelp>Supply your temperature in Fahrenheit (not Celsius)
</OneLineHelp>

</Parameter>
</Command>
<Command name="exitApp">
<Label>Exit</Label>
<OneLineHelp>Exits the Temperature Converter App</OneLineHelp>
<Question name="confirmExit">
<Type>boolean</Type>
<Label>Are you sure you want to exit?</Label>
<OneLineHelp>Confirms your intent to exit the app.</OneLineHelp>
<AskIfMethod>confirmAppExit</AskIfMethod>

</Question>
<QuitAfterIfMethod>appShouldQuit</QuitAfterIfMethod>

</Command>
</Johar>

Figure 4.11: The XML equivalent of the Temperature Converter App’s IDF

The app engine that does the actual computation is the TemperatureConverter class8,
which has six methods that can be invoked by Johar through its GemFullImplementation class
residing in the johar.gem package. The six methods are the initTemperatureConverter

(which is invoked when the app engine is initialized), celsiusToFahrenheit (which computes
the Fahrenheit equivalent of the Celsius temperature), fahrenheitToCelsius (which computes

8Shown in Appendix H of this thesis.

www.manaraa.com

54 Chapter 4. The Star Interface Interpreter

the Celsius equivalent of the Fahrenheit temperature), exitApp (which performs some
computation prior to terminating the app), confirmAppExit (which determines whether to ask
the user the “are you sure” question), and appShouldQuit (which returns the user’s response to
the “are you sure” question).

When the app is launched through Star, the Main Panel in Figure 4.12 is displayed. There
are two menus on the Menu Bar: the Convert menu and the special Star menu. The Convert
menu corresponds to the command group “convert” in the IDF. It has three menu items (as
shown in Figure 4.13), which correspond to the three member commands in the command
group.

The Star menu, whose menu item(s) represents service(s) provided by the Star interface
interpreter, has the Help menu item (as shown in Figure 4.14). Furthermore, the Text Display
Area contains a welcome message sent from the app engine when initialized. The Status Bar
displays a “Ready” message, which is also sent by the app engine, and signifies the readiness of
the app engine to perform computations. The Table Area is empty since there are no browsable
tables in the IDF.

Figure 4.12: Main Panel of the Temperature Converter App

www.manaraa.com

4.3. Implementation and Demonstration of Star 55

Figure 4.13: Main Panel of the Temperature Converter App [The Convert Menu]

Figure 4.14: Main Panel of the Temperature Converter App [The Star Menu]

When the “Celsius to Fahrenheit” menu item or command is selected, the Command Dialog
Box in Figure 4.15 is displayed. The Command Dialog Box has a parameter section that
contains a Number Widget, which is the parameter widget suitable for accepting a floating-
point temperature in Celsius. This parameter section corresponds to the “celsius” parameter
(in the IDF) whose type is float and labelled “Temperature in Celsius”. As shown in Figure
4.15, we entered “13” as the temperature in Celsius, and then clicked the OK button to trigger
the app engine to begin computation. The result of the computation was sent by the app engine
and displayed in the Text Display Area, as shown in Figure 4.16.

www.manaraa.com

56 Chapter 4. The Star Interface Interpreter

Figure 4.15: The Command Dialog Box for the “Celsius to Fahrenheit” Command

Figure 4.16: Text Display Area shows the conversion result

When Help is selected under the Star menu, the Top-Level State of the Help Box in Figure
4.17 is displayed. The Command State in Figure 4.18 is displayed when the “Celsius to
Fahrenheit” command label is selected from the Top Level State. The Parameter State in
Figure 4.19 is displayed when the “Temperature in Celsius” parameter label is selected from
the Command State.

www.manaraa.com

4.3. Implementation and Demonstration of Star 57

Figure 4.17: Top-Level State of the Temperature Converter App’s Help Box

Figure 4.18: Command State of the Temperature Converter App’s Help Box

Figure 4.19: Parameter State of the Temperature Converter App’s Help Box

www.manaraa.com

58 Chapter 4. The Star Interface Interpreter

Finally, when the “Exit” command is selected under the Convert menu, the “are you sure”
question in Figure 4.20 is displayed. The “Exit” command corresponds to the exitApp

command (in the IDF) which contains the confirmExit question of type boolean. To
terminate the app, the “Yes” option should be selected; and “No” if the app should stay on. In
Figure 4.20, the “Yes” option is selected, and the app terminates when the “OK” button is
clicked.

Figure 4.20: The Question Dialog Box confirming user’s intent to exit the App

Interacting with the Appointment Calendar App

The Appointment Calendar app is nicknamed “Ides of Johar”. Its IDF is shown in Appendix
I of this thesis. From the IDF, the app has three browsable tables: the “weeks” table whose
rows represent weeks in a given month, the “days” table whose rows represent days in a given
week and the number of appointments in each day, and the “appointments” table whose rows
represent appointments in a given day.

Moreover, the app has four command groups: appointment whose members are
commands for adding and cancelling appointments, as well as for exiting the app; previous

whose members are commands for navigating to the previous month, week, and day; next

whose members are commands for navigating to the next month, week, and day; and goTo

whose members are commands for moving to a particular week, day, or date.
The app includes commands to add and cancel appointments, and to navigate to specific

dates. The parameters to the “add appointment” command include the time of the
appointment, a description of the appointment, and data about how frequently and for how
long the appointment should be repeated in the following days, weeks, or months.

www.manaraa.com

4.3. Implementation and Demonstration of Star 59

When the app is launched via the Star interface interpreter, the Main Panel in Figure 4.21
is displayed. The Table Area shows the three browsable tables, with the “weeks” table initially
populated with weeks in the current month. The Text Display Area shows a welcome message
from the app engine. The first four menus in the Menu Bar correspond to the four command
groups in the IDF, while the last menu is the usual Star menu.

Figure 4.21: Main Panel of the Appointment Calendar App

To add an appointment to the current day, the “Add Appointment” command under the
Appointment menu is selected, as shown in Figure 4.22. Afterwards, the Command Dialog
Box for adding an appointment is displayed. As shown in Figure 4.23, the appointment time
is set to 9:30am of the current day, and should be repeated once in each of the two following
weeks.

Figure 4.22: Main Panel of the Appointment Calendar App [The Appointment Menu]

www.manaraa.com

60 Chapter 4. The Star Interface Interpreter

Figure 4.23: Command Dialog Box for the “Add Appointment” Command

After adding the appointment, a notification is displayed in the Text Display Area (as shown
in Figure 4.24) and the weeks table indicates the existence of three appointments (as shown in
Figure 4.25): the current day’s appointment, a repeated version in the following week, and
another repeated version in two weeks’ time.

Figure 4.24: A notification and a new appointment are shown in the Text Display Area and
Appointment table respectively

Figure 4.25: Weeks table indicates the existence of three appointments

Moreover, to add or view appointments for a specific date, the Previous, Next, and Go To

menus can be used to set the date. For example, to set the appointment date to “January 12,

www.manaraa.com

4.3. Implementation and Demonstration of Star 61

2014”, the Go To Date command under the Go To menu can be used. This is demonstrated in
Figures 4.26 and 4.27.

Figure 4.26: Selecting the “Go To Date” Command

Figure 4.27: The Command Dialog Box for the “Go To Date” Command

Furthermore, to cancel an appointment, the appointment must first be selected from the
Appointment table before clicking the “Cancel Appointment” command under the
Appointment menu. This is demonstrated in Figures 4.28, 4.29, and 4.30.

www.manaraa.com

62 Chapter 4. The Star Interface Interpreter

Figure 4.28: Selecting an appointment from the Appointment table

Figure 4.29: Cancelling the selected appointment via the “Cancel Appointment” Command

Figure 4.30: Cancellation notification in the Text Display Area and deletion of appointment
from the Appointment table

When Help is selected under the Star menu, the Top-Level State of the Help Box in Figure
4.31 is displayed. To view detailed help information, the label of the desired command should
be selected from the help table.

www.manaraa.com

4.3. Implementation and Demonstration of Star 63

Figure 4.31: Top-Level State of the Appointment Calendar App’s Help Box

Finally, to exit the app, the “Exit” command under the Appointment menu is selected, as
shown in Figure 4.32. A Message Dialog Box, shown in Figure 4.33, providing a notification
about the exit is then displayed and acknowledged (by clicking the OK button). Afterwards,
the app terminates.

Figure 4.32: Selecting the Exit Command to terminate the Appointment Calendar App

www.manaraa.com

64 Chapter 4. The Star Interface Interpreter

Figure 4.33: A Message Dialog Box notifying the user of a successful termination of the App

4.4 Quality Assurance on Star

Our quality assurance goals are:

(1) To ensure the behaviour of Star is in agreement with our specification for interface
interpreters;

(2) To ascertain that Star works as expected on apps.

In order to achieve the first goal, we reviewed the Star GUI Specification document and the Star
Behaviour Specification document in conjunction with the Interface Interpreter Specification
document for the purpose of detecting and correcting inconsistencies, ambiguities, and missing
requirements. We took note of each statement in the two Star specification documents that
negates some requirement in the Interface Interpreter Specification document. In addition, we
recorded each behavioural requirement of Star that is not captured in the Interface Interpreter
Specification document, and vice-versa.

The review process described in the previous paragraph was conducted prior to the
development of Star. The outcome of this review process revealed some issues, as
documented in Table 4.1.

www.manaraa.com

4.4. Quality Assurance on Star 65

Document with Issue Section with Issue Description of Issue
Interface Interpreter
Specification

Core Steps
(Initialization Phase)

There is no information
concerning refreshing or
initializing tables in this
document. However, this
information is available in the
Star Behaviour Specification
document.

Star GUI Specification 1 Wrong method found in point 6:
displayText. As stated in the
Interface Interpreter
Specification document, the
correct method is showText.

Star GUI Specification 2 Clarification required in point
15(b): the definition of an
incomplete stage is confusing or
ambiguous.

Star GUI Specification 4 Incorrect parameter type found
in point 1: string used instead
of text.

Table 4.1: Outcome of reviewing Star Specification documents in conjunction with the
Interface Interpreter Specification document

We fixed the first issue by including the missing information about the need for interface
interpreters to initialize tables via GemSetting. We further corrected the wrong method and
parameter type in the second and fourth issues respectively. For the third issue, we included
additional sentences explaining (in clear terms) what constitutes an incomplete stage of a
command. These additional and non-technical sentences help resolve the ambiguity that may
have resulted in a faulty implementation if not addressed.

Finally, to achieve the second quality assurance goal, we performed a live test on three
apps, two of which were presented in Section 4.3 above. The third is the Meal Planner app.
With this app, a user can specify the food items to eat for breakfast, lunch, and dinner, as well
as the date, start time, and duration of each meal. The user can save the meal information for
future retrieval if necessary.

www.manaraa.com

Chapter 5

Other Interface Interpreters

In this chapter, we discuss four previous interface interpreters that were built on top of the
2009 version of Johar, as well as two interface interpreters (besides Star) which ride on the
new version of Johar.

5.1 Previous Interface Interpreters

Prior to our quality assurance on Johar that led to its redesign, four interface interpreters -
Speak, Press, Senatus, and Show - were already in existence. The “Speak” interface
interpreter was developed for blind users who rely on keyboard and sound as means of
interacting with apps. Speak accepts input from users via the keyboard, and displays and
speaks the output to users. The “Press” interface interpreter was developed for users with
severe motor impairments. It elicits data by cyclically displaying and highlighting choices
with a user-controllable timer delay between the choices, and allowing the user to make a
selection by pressing a specific key when the intended choice has been highlighted. The
“Senatus” interface interpreter presents a Unix-like command-line interface to the user. Users
interact with apps through the command-line interface by entering commands that match their
intended tasks. Finally, the “Show” interface interpreter presents a graphical user interface
(GUI) through which users interact with apps.

However, despite the potential benefits derivable from these four interface interpreters, they
are not without shortcomings. For instance, Speak does not work well with tables, Senatus has
issue with parsing dates and times, Show does not display tables at launch time and also does
not support multi-stage commands, and none of the four interface interpreters work well with
questions. Moreover, their smooth operation was hindered by faults in the old version of Johar
on which they were built.

Fortunately, our quality assurance on Johar, discussed in Chapter 3, has led to a new and

66

www.manaraa.com

5.2. The StarX Interface Interpreter 67

more reliable version of Johar which in turn facilitates the smooth operation of interface
interpreters, as well as ensuring effective collaboration between interface interpreters and
apps. We have already designed and implemented a classic WIMP GUI interface interpreter
(called Star, presented in Chapter 4 of this thesis) which is based on this new version of
Johar. We also designed two other interface interpreters - Grupo and StarX - which are
discussed in the subsequent sections. The implementation of these two interface interpreters
will be accomplished in the near future.

We believe that the implementation of StarX and Grupo, together with the quality
assurance activities of this thesis, will make the more complex process of designing important
interface interpreters for blind, low-vision and motor-impaired users easier.

5.2 The StarX Interface Interpreter

The keyboard has been a major input device for users with restricted hand use, who find it
difficult to accurately position a mouse pointer on screen objects [52]. Moreover, frequent
mouse usage has been linked to discomfort and pain around the wrist, along the forearm and
elbow, and on top of the hand [53]. This is as a result of frequent positioning, scrolling, and
clicking with the mouse [53]. Furthermore, a good keyboard implementation has been known
to improve user productivity [52].

Thus, in order to make the Star interface interpreter (discussed in Chapter 4) accessible
to keyboard-bound users, we decided to enhance its GUI to support keyboard shortcuts. This
decision led to the design of StarX, which is an eXtended version of Star that facilitates
keyboard-only interactions. Thus, if a user prefers to use only the keyboard (without the
mouse) to interact with interface components, StarX will fully support the user by activating
the keyboard shortcuts defined in the StarX GUI Specification document (available in
Appendix J of this thesis). StarX offers users the flexibility of enabling or disabling the
keyboard shortcuts, when necessary. Thus, StarX becomes beneficial to all users - both
keyboard and mouse users alike.

5.2.1 The StarX GUI

The StarX GUI is almost the same as the Star GUI described in Chapter 4. However, the
StarX GUI has been enhanced to respond to keystrokes and to provide visual cues as each part
of the interface receives focus.

The Main Panel of StarX GUI consists of the Menu Bar, a Text Display Area, a Table
Area, and the Status Bar. The Menu Bar consists of application menus and a special menu,

www.manaraa.com

68 Chapter 5. Other Interface Interpreters

called StarX, whose menu items represent services provided by the StarX interface
interpreter for all Johar apps. The StarX menu contains three menu items: Help, Enable

Keyboard-only Interaction, and Show Hotkeys Pop-up Table. The Help menu item displays the
Help Box when selected by the user. The Enable Keyboard-only Interaction menu item
activates keyboard shortcuts and disables mouse effects (e.g. pointer movement, clicking,
scrolling, and dragging), when selected1. To deactivate keyboard shortcuts and enable mouse
effects, the Disable Keyboard-only Interaction menu item should be selected by the user.

Furthermore, when keyboard shortcuts have been activated, the user might require the
service of a pop-up table which reminds him/her of the shortcuts applicable to the focused
part of the interface. This table, called “Hotkeys Pop-up Table”, can be activated by selecting
Show Hotkeys Pop-up Table under the StarX menu2 or by pressing the assigned shortcut key.
To hide the pop-up table, the user can press the assigned shortcut key or select the Hide

Hotkeys Pop-up Table menu item under the StarX menu. Details about the Hotkeys Pop-up
Table will be found in one of the subsections below.

Visual Cue for Focused Interface Widgets

As the user interacts with the user interface using keyboard shortcuts, it is imperative for StarX
to provide a visual feedback so that the user can know which widget currently has focus. This
visual feedback or cue generally helps the user to easily determine where they are in the user
interface, even in complex situations.
StarX provides visual feedback by surrounding every focused widget with a partly thick

red border. The red border will quickly attract user’s attention to the widget that currently has
focus. For example, in Figure 5.1, a red border surrounds the first parameter repetition widget
which currently has focus.

5

topmost repetition of the next parameter section to

receive focus.

 If the current parameter section is the last parameter

section of the stage, pressing the key causes the widget

for the topmost repetition of the 1
st
 parameter section to

receive focus again.

F3
Transfers focus to the widget for the next repetition of the

current parameter section.

F4
Transfers focus to the widget for the previous repetition of the

current parameter section.

Table 5: Keyboard shortcuts for the Parameter Section

Whenever the widget for the topmost repetition of a stage’s parameter section receives focus, a

red border is shown around the current repetition section to serve as a visual cue for the user (See

Figure 4).

Label of parameter

followed by colon (:)

1
st
 Repetition Widget

2
nd

 Repetition Widget

3
rd

 Repetition Widget

4
th

 Repetition Widget

Figure 4: A red border is shown around the 1
st
 Repetition Section

2.2 Repetition Section of the Parameter Section

Requirements 1 to 5 under Section 4 of Star GUI Specification document are applicable under

this section, in addition to the keyboard shortcuts in Table 6. Note that Control + <key> means

the user holds down Control while pressing <key>.

Keyboard Shortcut Function

Control + A
Presses the Add another button of the current parameter

section.

Control + X Presses the Delete button of the current repetition.

Control + U Presses the Move Up button of the current repetition.

Control + D Presses the Move Down button of the current repetition.

Table 6: Keyboard shortcuts for buttons in the Repetition Section of a Parameter Section

Figure 5.1: A red border acting as a visual cue for a widget that currently has focus
1The word “Enable” in the Enable Keyboard-only Interaction menu item changes to “Disable”, and vice-versa,

when selected by the user.
2The word “Show” in the Show Hotkeys Pop-up Table menu item changes to “Hide”, and vice-versa, when

selected by the user.

www.manaraa.com

5.2. The StarX Interface Interpreter 69

The Hotkeys Pop-up Table

This table, shown in Figure 5.2, informs the user about the keyboard shortcuts or hotkeys
that are applicable to certain sections or parts of the user interface. Thus, whenever a section
receives focus (such as focusing on the Table Area) or a new window is launched (such as
launching a Command Dialog Box) in the user interface, the table automatically displays the
shortcuts that are applicable to that section or window. For example, if the Table Area of
the Main Panel receives focus, the table shows all the shortcuts (and their functions) that are
applicable to the Table Area. In addition, the content of the Hotkeys table changes as the
user moves from one widget to another within the active section or window. For instance, as
the user selects a table widget in the Table Area, the content of the Hotkeys table changes
to reflect the keyboard shortcuts applicable to the selected table widget (such as the shortcuts
for selecting and deselecting rows). This dynamic pop-up table, therefore, helps the user in
effectively navigating different parts of the user interface.

Active Keyboard Shortcuts for <interface section>

Shortcut 1 Function of Shortcut 1

Shortcut 2 Function of Shortcut 2

Shortcut 3 Function of Shortcut 3
.
.
.

.

.

.
Shortcut n Function of Shortcut n

A name identifying the focused part of the user interface is
displayed here (e.g. Table Area, Command Dialog,
Parameter Repetition Section, Help Box Command State,
Text Display Area, etc.)

Figure 5.2: The Hotkeys Pop-up Table

5.2.2 Rationale for the Choice of Keyboard Shortcuts

Our choice of keyboard shortcuts is guided by efficiency and easy memorization of keys. To
achieve efficiency, we decided to assign single-key shortcuts to interface elements or widgets

www.manaraa.com

70 Chapter 5. Other Interface Interpreters

to enable users perform their intended tasks quickly and with less effort. Single-key shortcuts
will also be easier to memorize than two or three combinations of keys. We were able to
implement this decision or objective to a large extent, as evident from the StarX GUI
Specification document in Appendix J; however, we faced two major challenges which are
described below.

• Most GUI toolkits, including Java Swing, do not support single-key shortcuts for menus.
Instead, they require the Alt key to precede any single-key (or mnemonic) assigned to a
menu. For example, Alt+F selects the File menu, Alt+E selects the Edit menu, etc. on
many Windows applications (e.g. Text Editors).

• Due to the presence of data entry widgets (such as widgets for entering/selecting textual,
numeric, date, and time values) in some interface containers (such as Command Dialog
Box, Help Box, and Question Box), using single-key shortcuts for certain actions (such
as pressing a button, or transferring focus among data entry widgets) becomes infeasible.
For instance, when a text widget (e.g. text box) receives focus, pressing keys like H, Y,
S, L causes the characters to appear inside the widget instead of clicking a button or
transferring focus to another data entry widget.

We resolved the first challenge by using the Alt key in conjunction with the M key to select the
first menu, and then allowing traversal from one menu to another via the left and right arrow

keys or Z and X keys. We resolved the second challenge by using the Ctrl key in conjunction
with another key to click buttons, and using Function keys (e.g. F3, F5, etc.) to transfer focus
from one data entry widget to another, as well as to display pop-ups (such as Calendar pop-up
box, File Chooser Dialog box, and the Hotkeys pop-up table).

5.3 The Grupo Interface Interpreter

Grupo3 is a “batch mode” interface interpreter that accepts a text file, containing various
commands, as input. These commands are peculiar to Grupo (just like Unix commands are
peculiar to Unix-based operating systems), and they constitute the means by which users
perform their intended tasks. Grupo commands covers table selection, browsing contents of
tables, selecting rows from a table, deselecting selected table rows, accessing and launching
app commands4, specifying parameters for app commands, and accessing help contents.
Grupo reads each line of command from the input file, executes the command against the app

3Grupo means “batch”, “set”, or “group” in Spanish.
4App commands are defined in the IDF written by the app developer.

www.manaraa.com

5.3. The Grupo Interface Interpreter 71

engine, and then writes output messages to the Standard Output (stdout)5. The syntax,
semantics, and behaviour of Grupo commands are available in the Grupo Requirements and
Behaviour Specification documents (which will be found in Appendix K and Appendix L of
this thesis).
Grupo is a powerful tool for exercising the capabilities of apps, for debugging app engines,

for performing regression testing on apps, and for detecting missing features or functionality
in apps. In addition, since the input and output of Grupo are text-based, it could be used as the
basis of a rudimentary Braille-based or speech-based interface interpreter.

In this section, we discuss how Grupo provides access to tables, app commands,
parameters, and help contents. A sample input file, in Figure 5.3, containing Grupo
commands for interacting with the Appointment Calendar app (described in Chapter 4) is
used as an illustration. We wrap up this section by discussing how Grupo can be used in
detecting faults in app engines.

5.3.1 Working with Tables

Grupo provides commands for setting the current table, selecting rows from the current table,
deselecting rows in the current table, and displaying the content of a table.

Setting the Current Table

To set the current table in Grupo, the table command is used. The table command accepts
the name of the desired table, which must be one of the tables specified in the IDF, as an
argument. For example, to set the Appointment table as the current table, the following line
was inserted in the sample input file (as shown in Figure 5.3):

table appointments

where appointments is the name assigned to the Appointment table in the IDF.

Selecting Rows from the Current Table

Having set the current table with the table command, rows of data can be selected through
the select command. The select command accepts the desired row number as an argument.
The row number is a number n, where n ≥ 1. Thus, row number 1 represents the first row, 2
represents the second row, 3 represents the third row, and so on. Moreover, in order to select m

rows from the current table (where m ≥ 1), m select commands must be issued. For example,

5Output messages written to the Standard Output are displayed on the Terminal (in Unix operating systems)
or Command Window (in Windows operating systems) by default, but can be redirected to a file if required.

www.manaraa.com

72 Chapter 5. Other Interface Interpreters

//Make appointments the current table, select the second and fourth rows
table appointments
select 2
select 4

//Add a new appointment which is repeated once weekly for 3 weeks
command addAppointment
param time "9:30 am"
param description "Meeting with the Graduate Chair of CS Dept."
param numOfReps 3
param repeatEvery week
ok

//Deselect the fourth row of the appointments table
deselect 4

//Cancel the selected appointment (i.e. second appointment)
command cancel
ok

//Display the content of the appointments table
browse appointments

//Display the brief help of the cancel command
help -b cancel

//Terminate the application
command quit
ok

Figure 5.3: An input file containing Grupo commands for interacting with the Appointment
Calendar App

www.manaraa.com

5.3. The Grupo Interface Interpreter 73

to select the second and fourth appointments from the Appointment table, the following lines
were inserted in the sample input file:

select 2

select 4

Deselecting Rows in the Current Table

Having selected rows of data from the current table using the select command, any selected
row can be deselected through the deselect command. Similar to the select command, the
deselect command accepts the desired row number as an argument. The row number is a
number n, where n ≥ 1. Moreover, in order to deselect m rows in the current table (where m ≥

1), m deselect commands must be issued. For example, to deselect the fourth appointment
in the Appointment table, the following line was inserted in the sample input file:

deselect 4

Displaying the Content of a Table

The data in a table can be displayed on screen through the browse command provided by
Grupo. The browse command accepts the name of the desired table as argument. This table
must be declared as browsable in the IDF. For example, to display all the appointments in the
Appointment table, the following line was inserted in the sample input file:

browse appointments

where appointments is the name assigned to the Appointment table in the IDF.

5.3.2 Accessing App Commands

The app commands, defined in the IDF, represent the app’s features through which users carry
out their intended tasks. The app commands may accept parameters, also defined in the IDF,
as input. Each of these parameters requires value(s) of a specific type6 to be supplied by the
user.
Grupo provides access to app commands through the “command” keyword, followed by the

name of the app command (as specified in the IDF). For example, to add a new appointment,
the following line was inserted in the sample input file:

command addAppointment

6The valid types are int, float, boolean, choice, text, file, date, timeOfDay, and tableEntry.

www.manaraa.com

74 Chapter 5. Other Interface Interpreters

where addAppointment is the command for adding a new appointment, as specified in the
IDF.

Specifying Parameters for App Commands

Having specified an app command in the input file, the parameters to that app command can
then be supplied through the param command provided by Grupo. The param command
accepts both the parameter name7 and parameter value as arguments. The param command
must be placed on a new line immediately after the use of the app command in the input
file. Parameter values containing blank spaces (such as texts) are enclosed in double quotation
marks. For example, to specify the time and description of the new appointment to be added,
the following lines were inserted in the sample input file:

param time "9:30 am"

param description "Meeting with the Graduate Chair of CS Dept."

Executing App Commands

After specifying an app command and its parameters, a line containing the ok command must
be placed immediately after the last param command (or after the app command if no param
command is specified). When Grupo sees the ok command, it notifies the app engine (through
Johar) to begin computation on the app command that immediately precedes the ok
command. For example, in Figure 5.3, when Grupo reaches the first ok command while
reading and interpreting the content of the input file line-by-line, it notifies the app engine to
begin computation on the addAppointment command (which is the app command that
immediately precedes the first ok command). Thus, the app engine, after computation, adds
the specified appointment to the calendar.

5.3.3 Accessing Help Contents

Help contents defined for app commands and parameters in an IDF can be accessed by the user
through the help command provided by Grupo. The help command provides access to the
BriefHelp, OneLineHelp, and MultiLineHelp of each app command or parameter in the IDF
through the -b, -o, and -m options respectively. Thus, the help command accepts an option
(-b, -o, or -m) and the name of the app command or parameter as arguments. However, if an
option is not specified in the help command, then the -o option is used by Grupo. For example,

7Specified in the IDF for the app command.

www.manaraa.com

5.3. The Grupo Interface Interpreter 75

to display the BriefHelp of the “cancel” command (which is used for canceling appointments),
the following line was inserted in the sample input file:

help -b cancel

5.3.4 Testing Apps Using Grupo

Since Grupo allows all the commands needed to interact with an app to be batched in a file, it
becomes easy to generate test cases for the purpose of testing each functionality or feature of
any app. Each test case is a file containing Grupo commands, such as the sample file shown
in Figure 5.3, for testing one feature or group of features of an app. As shown in Figure 5.4,
Grupo accepts a test case as an input, and then runs it against the app engine via Johar.

TEST SUITE

Test Case 1
Test Case 2

.

.
Test Case n

Standard Output
(stdout)

test case

Grupo

Johar

output of execution

reads

Tester
App Engine

app commands
&

parameters

invokes

output

retrieves app engine’s output

Figure 5.4: Grupo accepts a test case, executes it against the App Engine via Johar, and displays
output information on Standard Output for a Tester’s perusal

Grupo displays the output of the app engine’s computation on the Standard Output,
including other information that will assist the tester in making accurate decisions. Thus,
there is need for the tester to be able to distinguish information displayed on the Standard
Output. As a result, we group output information displayed by Grupo into six categories. As
shown in Table 5.1, each category of information is identified by a three-letter prefix. For
instance, an error message is easily identified via the ERR prefix e.g. ERR: Integer value
expected for parameter “age”.

Prefix Category of Information Purpose
COM Command Input Precedes each app command’s input (i.e.

parameter) displayed on the Standard Output.

www.manaraa.com

76 Chapter 5. Other Interface Interpreters

OUT App Engine’s Output Precedes every output of an app engine’s
computation displayed on the Standard Output.

TAB Table Content Precedes every table whose content is displayed on
the Standard Output.

ERR Error Message Precedes every error message displayed on the
Standard Output.

REM Remark/Comment Precedes every comment (starting with “//” in an
input file) displayed on the Standard Output.

HLP Help Content Precedes every help information displayed on the
Standard Output.

Table 5.1: Prefix for each category of information displayed on the Standard Output

The tester can then examine the error messages, app engine output, table contents, and
other information displayed on the Standard Output for each test case in order to make critical
decisions such as the exact location of bugs or faults in the app, positive/negative effect of an
enhancement on the app, and missing or incomplete features in the app.

www.manaraa.com

Chapter 6

Conclusion

Our overall goal is to assure the quality of Johar, which is a framework for developing apps
that are accessible to both disabled and non-disabled users. We were able to accomplish this
goal, having detected and resolved many inconsistencies, omissions, irrelevancies, and other
anomalies that can trigger unexpected or abnormal behaviour in Johar, and/or alter the smooth
operation of interface interpreters and apps.

Our approach involved reviewing the two Johar components or packages - johar.gem
and johar.idf - by critically examining the functionality of classes in each component,
including how classes interrelate and how functions are allocated or distributed among the
classes. We discovered several shortcomings, which were resolved through series of redesign
activities. Furthermore, we performed an exhaustive comparative review of four documents
(i.e. IDF Format Specification document, XML Schema Document or XSD, the Interface
Interpreter Specification document, and the johar.idf package) that are vital to the smooth
running of all interface interpreters and apps, which in turn led to the detection and resolution
of various discrepancies. We concluded the review process by performing automated tests on
IDFs. The automated testing tool we developed for this purpose utilized the johar.idf
package to transform each IDF (used as test cases) to an XML document, to validate the XML
document (using the XML Schema Document), and to check for violation against several
other constraints not captured in the XSD.

Having redesigned Johar through our quality assurance process, we proceeded to design
and implement an interface interpreter (called Star which presents WIMP graphical user
interfaces to users) in order to demonstrate Johar’s ability to guarantee unhindered interaction
between interface interpreters and apps. Prior to its implementation, we made sure that the
design documents of Star are consistent with the specification document which must be
satisfied by all interface interpreters (i.e. Interface Interpreter Specification document).

Finally, we designed two other interface interpreters - Grupo and StarX - whose
implementation will be accomplished in the near future.

77

www.manaraa.com

78 Chapter 6. Conclusion

6.1 Future Work

In the near future, we would like to release our first version of Johar to the open source
community. We want the released Johar bundle to initially include some interface interpreters
suitable for non-disabled users (such as Star), blind users, motor-impaired users, and
low-visioned users, as well as include a series of apps. Finally, we would establish interface
interpreter and app developers community, as well as users forum that will serve as a platform
on which Johar developers brainstorm, and on which app users share their views and
experiences.

For this future work, the work on this thesis has laid a solid foundation. By assuring the
consistency between the Johar design documents, the Star specification, and the
implementation of Star, we have shown that Johar is an internally consistent framework that
can act as the basis for complex interface interpreters and apps. By our other quality
assurance activities, we have also lowered the number of design and implementation bugs,
thus making the process of developing further interface interpreters and apps smoother and
more trouble-free.

www.manaraa.com

Bibliography

[1] U.S Department of Justice. Information Technology and People with
Disabilities: The Current State of Federal Accessibility. [Online]. Available:
http://www.justice.gov/crt/508/report/software.htm (Accessed August 2013)

[2] M. W. Brault. (2012, July) Americans With Disabilities: 2010 (Current Population
Reports). [Online]. Available: http://www.census.gov/prod/2012pubs/p70-131.pdf

[3] World Health Organization, “Draft action plan for the prevention of avoidable
blindness and visual impairment 2014—2019. Towards universal eye health: a
global action plan 2014—2019,” World Health Organization Sixty-Sixth World
Health Assembly, no. A66/11, pp. 1–18, March 2013. [Online]. Available:
http://apps.who.int/gb/ebwha/pdf files/WHA66/A66 11-en.pdf

[4] World Health Organization (WHO), Global Initiative for the Elimination of Avoidable
Blindness: action plan 2006–2011. Geneva 27, Switzerland: WHO Press, 2007.

[5] Freedom Scientific. JAWS. JAWS Headquarters. [Online]. Available:
http://www.freedomscientific.com/jaws-hq.asp (Accessed July 2013)

[6] NV Access. NVDA features. [Online]. Available: http://www.nvaccess.org/about/nvda-
features/ (Accessed July 2013)

[7] GW Micro, Inc. GW Micro - Window-Eyes. [Online]. Available:
http://www.gwmicro.com/Window-Eyes/ (Accessed July 2013)

[8] Freedom Scientific. MAGic Screen Magnification Software with Speech.
[Online]. Available: http://www.freedomscientific.com/products/low-vision/MAGic-
screen-magnification-software.asp (Accessed July 2013)

[9] M. Porta, A. Ravarelli, and G. Spagnoli, “ceCursor, a contextual eye cursor for general
pointing in windows environments,” in Proceedings of the 2010 Symposium on Eye-
Tracking Research & Applications. ACM, 2010, pp. 331–337.

[10] P. Punyabukkana, S. Chanjaradwichai, and A. Suchato, “Design and evaluation of
nonverbal sound-based input for those with motor handicapped,” Disability and
Rehabilitation: Assistive Technology, vol. 8, no. 2, pp. 108–114, 2013.

79

www.manaraa.com

80 BIBLIOGRAPHY

[11] R. Sinclair. (2000, May) Microsoft Active Accessibility: Architecture.
Microsoft Corporation. [Online]. Available: http://msdn.microsoft.com/en-
us/library/ms971310.aspx

[12] Microsoft Corporation. UI Automation Overview. [Online]. Available:
http://msdn.microsoft.com/en-us/library/windows/desktop/ee684076.aspx (Accessed
July 2013)

[13] Linux Foundation. (2009, December) IAccessible2: Enhancing
Accessibility and Multi-Platform Development. [Online]. Available:
http://www.linuxfoundation.org/collaborate/workgroups/accessibility/iaccessible2/

overview

[14] K. Z. Gajos, D. S. Weld, and J. O. Wobbrock, “Automatically generating personalized
user interfaces with SUPPLE,” Artificial Intelligence, vol. 174, no. 12, pp. 910–950, 2010.

[15] K. Z. Gajos, J. O. Wobbrock, and D. S. Weld, “Improving the performance of motor-
impaired users with automatically-generated, ability-based interfaces,” in Proceedings of
the SIGCHI conference on Human Factors in Computing Systems. ACM, 2008, pp.
1257–1266.

[16] J. Abascal, A. Aizpurua, I. Cearreta, B. Gamecho, N. Garay-Vitoria, and R. Minon,
“Automatically generating tailored accessible user interfaces for ubiquitous services,” in
Proceedings of the 13th international ACM SIGACCESS conference on Computers and
accessibility. ACM, October 2011, pp. 187–194.

[17] J. H. Andrews and F. Hussain, “Johar: a framework for developing accessible
applications,” in Proceedings of the 11th international ACM SIGACCESS conference on
Computers and accessibility. ACM, 2009, pp. 243–244.

[18] C. Reynolds, “A critical examination of separable user interface management systems:
constructs for individualization,” SIGCHI bulletin, vol. 29, pp. 41–45, 1997.

[19] D. Benyon, Designing interactive systems: A comprehensive guide to HCI and interaction
design. Addison Wesley, 2010.

[20] Ai Squared. ZoomText Magnifier/Reader. [Online]. Available:
http://www.aisquared.com/zoomtext/ (Accessed July 2013)

[21] S. Burgstahler. (2012) Working together: People with disabilities
and computer technology. University of Washington. [Online]. Available:
http://www.washington.edu/doit/Brochures/PDF/wtcomp.pdf (Accessed July 2013)

[22] D. Freitas and G. Kouroupetroglou, “Speech technologies for blind and low vision
persons,” Technology and Disability, vol. 20, no. 2, pp. 135–156, 2008.

[23] Microsoft Corp. Hear text read aloud with Narrator. [Online].
Available: http://windows.microsoft.com/en-ca/windows-8/hear-text-read-aloud-with-
narrator (Accessed July 2013)

www.manaraa.com

BIBLIOGRAPHY 81

[24] Apple Inc. VoiceOver for OS X. a feature that speaks for itself. [Online]. Available:
http://www.apple.com/accessibility/osx/voiceover/ (Accessed July 2013)

[25] The GNOME Project. (2010) What is LSR? [Online]. Available:
https://wiki.gnome.org/LSR (Accessed July 2013)

[26] GNOME Project. (2011, November) About Orca. GNOME Foundation. [Online].
Available: https://wiki.gnome.org/Orca

[27] Web Accessibility In Mind (WebAIM). (2012, May) Screen Reader User Survey 4
Results. [Online]. Available: http://webaim.org/projects/screenreadersurvey4/

[28] S. Chanjaradwichai, P. Punyabukkana, and A. Suchato, “Design and evaluation of a
non-verbal voice-controlled cursor for point-and-click tasks,” in Proceedings of the
4th International Convention on Rehabilitation Engineering & Assistive Technology.
Singapore Therapeutic, Assistive & Rehabilitative Technologies (START) Centre, 2010,
p. 48.

[29] P. Biswas and P. Robinson, “The cluster scanning system,” Universal Access in the
Information Society, pp. 1–9, 2012.

[30] P. Biswas and P. Langdon, “A new input system for disabled users involving eye gaze
tracker and scanning interface,” Journal of Assistive Technologies, vol. 5, no. 2, pp. 58–
66, 2011.

[31] M. Basheer. (2013, March) Blind User Computing. [Online].
Available: http://lbsitbytes2010.wordpress.com/2013/03/20/blind-user-computing-done-
by-mufeeda-basheer/

[32] Gunnar Schmidt. GNOME Accessibility Architecture (ATK and AT-SPI). GNOME
Foundation. [Online]. Available: http://accessibility.kde.org/developer/atk.php (Accessed
July 2013)

[33] Apple Inc. (2012, July) Accessibility Overview for OS X. [Online]. Available:
https://developer.apple.com/library/mac/documentation/Accessibility/Conceptual/
AccessibilityMacOSX/AccessibilityMacOSX.pdf

[34] Oracle Corp. and Affiliates. Package javax.accessibility. [Online].
Available: http://docs.oracle.com/javase/7/docs/api/javax/accessibility/package-
summary.html (Accessed August 2013)

[35] H. R. Hartson and D. Hix, “Human-computer interface development: concepts and
systems for its management,” ACM Computing Surveys (CSUR), vol. 21, no. 1, pp. 5–
92, 1989.

[36] M. Green, “Report on dialogue specification tools,” in Computer Graphics Forum, vol. 3,
no. 4. Wiley Online Library, 1984, pp. 305–313.

www.manaraa.com

82 BIBLIOGRAPHY

[37] L. Bass, R. Faneuf, R. Little, N. Mayer, B. Pellegrino, S. Reed, R. Seacord, S. Sheppard,
and M. R. Szczur, “A metamodel for the runtime architecture of an interactive system,”
SIGCHI Bulletin, vol. 24, no. 1, pp. 32–37, 1992.

[38] J. Deacon. (2013, September) Model-View-Controller (MVC) architecture. [Online].
Available: http://www.jdl.co.uk/briefings/MVC.pdf

[39] U. Enzler. (2009, April) Passive View Command (PVC) Pattern. [Online]. Available:
http://www.planetgeek.ch/2009/04/08/passive-view-command-pvc-pattern/

[40] F. Alonso, J. L. Fuertes, Á. L. González, and L. Martı́nez, “User-interface modelling for
blind users,” in Computers Helping People with Special Needs. Springer, 2008, pp.
789–796.

[41] O. Shaer, R. J. Jacob, M. Green, and K. Luyten, “User interface description languages
for next generation user interfaces,” in CHI’08 extended abstracts on Human factors in
computing systems. ACM, 2008, pp. 3949–3952.

[42] J. Helms, R. Schaefer, K. Luyten, J. Vanderdonckt, J. Vermeulen, and M. Abrams, “User
Interface Markup Language (UIML) Specification version 4.0,” Organization for the
Advancement of Structured Information Standards, Tech. Rep., May 2009.

[43] A. Puerta and J. Eisenstein, “XIML: A universal language
for user interfaces,” White paper, 2001. [Online]. Available:
http://pascal.joyeux.free.fr/PROBATOIRE/SystemesAutonomes/XimlWhitePaper.pdf

[44] Q. Limbourg, J. Vanderdonckt, B. Michotte, L. Bouillon, M. Florins, and D. Trevisan,
“USIXML: A user interface description language for context-sensitive user interfaces,” in
Proceedings of the ACM AVI’2004 Workshop on Developing User Interfaces with XML:
Advances on User Interface Description Languages”(Gallipoli 2004), 2004, pp. 55–62.

[45] D. Ryzko, D. Ryżko, P. Gawrysiak, H. Rybinski, and M. Kryszkiewicz, Emerging
Intelligent Technologies in Industry, ser. Studies in Computational Intelligence. Springer,
August 2011. [Online]. Available: http://books.google.ca/books?id=VxC4ITrB44YC

[46] N. Souchon and J. Vanderdonckt, “A review of XML-compliant user interface description
languages,” in Interactive Systems. Design, Specification, and Verification. Springer,
2003, pp. 377–391.

[47] L. Wang and A. Sajeev, “Abstract interface specification languages for device-
independent interface design: classification, analysis and challenges,” in Pervasive
Computing and Applications, 2006 1st International Symposium on. IEEE, 2006, pp.
241–246.

[48] K. Z. Gajos, J. J. Long, and D. S. Weld, “Automatically Generating Custom User
Interfaces for Users With Physical Disabilities,” in Proceedings of the 8th international
ACM SIGACCESS conference on Computers and accessibility. ACM, October 2006,
pp. 243–244.

www.manaraa.com

BIBLIOGRAPHY 83

[49] K. Z. Gajos, J. O. Wobbrock, and D. Weld, “Automatically generating user interfaces
adapted to users’ motor and vision capabilities,” in Proceedings of the 20th annual ACM
symposium on User interface software and technology. ACM, October 2007, pp. 231–
240.

[50] Oracle Corporation and Affiliates. Package javax.swing. [Online]. Available:
http://docs.oracle.com/javase/7/docs/api/javax/swing/package-summary.html (Accessed
August 2013)

[51] Oracle Corporation & Affiliates. Package java.awt.event.
[Online]. Available: http://docs.oracle.com/javase/7/docs/api/java/awt/event/package-
summary.html (Accessed August 2013)

[52] IBM Corporation. (2013, January) Keyboard equivalents for actions. [Online]. Available:
http://www-03.ibm.com/able/guidelines/software/swkbdequiv.html

[53] Canadian Centre for Occupational Health & Safety. (2011, April)
Computer Mouse - Common Problems from Use. [Online]. Available:
http://www.ccohs.ca/oshanswers/ergonomics/office/mouse/mouse problems.html

www.manaraa.com

Appendix A

Johar Interface Description File (IDF):
Format Specification

This document describes the specification of the Johar Interface Description File (IDF), version
1.0.

A.1 Syntax

A.1.1 Syntax of Attribute Declarations

An IDF consists of attribute declarations, possibly separated by whitespace. Whitespace has
no particular meaning except inside string or longtext values (see below). Each attribute
declaration is of one of the following forms:

Attribute

Attribute name

Attribute = value

Attribute name = value

Each Attribute is an upper-case identifier, i.e. a sequence of letters, numbers and underscores
starting with an upper-case letter. Attributes must be those named in the specification below.
Each name is a lower-case identifier, i.e. a sequence of letters, numbers and underscores starting
with a lower-case letter. Generally, each name is chosen by the writer of the IDF.

Values are of four different forms: identifiers, strings, longtext, and structures. An identifier

is a sequence of letters, numbers and underscores. A string is a sequence of characters in-
between paired double quote characters. Inside a string, the backslash is the escape character:
the sequence \" indicates a literal double quote, the sequence \\ indicates a literal backslash,
and the backslash followed by a newline indicates a literal newline.

84

www.manaraa.com

A.1. Syntax 85

Table clientData

Command open = {

BriefHelp = "Open or create client data file."

MultiLineHelp = {{

Open the file containing data about clients.

If the file does not exist, it is created.

}}

Parameter preferredExtension = {

Type = text

}

}

Figure A.1: Example of IDF syntax.

Although multi-line strings can be constructed by using the backslash followed by a
newline, this is not a very convenient way of entering them. A longtext is a value format
designed for multi-line text. A longtext value consists of a sequence of two open curly braces
(“{{”) at the end of a line, followed by any lines of arbitrary text, followed by a sequence of
two close curly braces (“}}”) on a separate line.

A structure consists of a single open curly brace, followed by any number of attribute
declarations, followed by a single close curly brace. Each attribute declaration has the format
described at the top of this section. If an attribute declaration contains a structure, then the
attributes in the structure are referred to as child attributes, and the enclosing attribute as the
parent attribute; we also say that the child attributes are sub-attributes of the parent.

A.1.2 Example

As an example of all of the above, consider the attribute declarations shown in Figure A.1.
In that example, there happen to be no repetitions of attribute names, although in some cases
attributes can be repeated. The Table attribute has a name but no value; the Command and
Parameter attributes each have both a name and a value (both values happen to be structures);
and all other attributes have a value but no name. Type has an identifier value, BriefHelp has
a string value, and MultiLineHelp has a longtext value. BriefHelp, MultiLineHelp, and
Parameter are sub-attributes of Command, and Type is a sub-attribute of Parameter.

A.1.3 Processing of Identifiers as Values

Wherever a double-quoted string literal can appear as a value for an attribute, an upper- or
lower-case identifier can also appear if such an identifier would be in the right format. In this

www.manaraa.com

86 Chapter A. Johar Interface Description File (IDF): Format Specification

case the value is treated as a string consisting of just the characters in the identifier. For
instance, the string "tableEntry" and the lower-case identifier tableEntry are treated
exactly the same when they appear as the value of a parameter.

A.2 Allowed Attributes

In what follows below, if no mention is made of the name corresponding to an attribute, then
the attribute must have no associated name. Each attribute is followed by a description of the
multiplicity of the attribute, i.e. the number of times that the attribute can appear at the top level
and/or as a sub-attribute of another attribute. If an attribute is optional (has multiplicity “0 or
1”), it may have a default value, which is also described.

A.2.1 Top-level Attributes

This section describes the attributes that can appear at the top level of the IDF.

• Application: The unique identifier of the application. (Required)

– value: An upper-case identifier (the name of the application).

Multiplicity: Exactly 1.

• ApplicationEngine: The class which contains the application-specific logic of the
application.

– value: An upper-case identifier (the name of the application engine class).

Multiplicity: 0 or 1.
Default value: The value of the Application attribute.

• Command: A structure representing the basic top-level unit of user-application
interaction.

– name: A lower-case identifier (the name of the command).

– value: A structure. See Sections A.2.2, Sub-attributes of Command, and A.2.3, Sub-
attributes of Stage and Single-Stage Commands.

Multiplicity: 1 or more.

• CommandGroup: A structure representing a group of related commands.

www.manaraa.com

A.2. Allowed Attributes 87

– name: A lower-case identifier (the name of the command group).

– value: A structure. See Section A.2.6, Sub-attributes of CommandGroup.

Multiplicity: 0 or more.
A CommandGroup is a group of conceptually related commands. The commands
themselves are defined in Command attributes; CommandGroups group them by name,
and contain no additional information about the Commands.

An interface interpreter may use command group information in order to structure the
interface. For instance, a classic GUI might present each command group in a separate
dropdown menu on a menu bar, and any interface interpreter might use command group
information in order to structure help information.

A command cannot appear as a member of more than one command group. All
commands that are not explicitly put into a command group in an IDF are put into an
implicitly-defined command group, whose name is commands. In particular, if no
CommandGroups are defined, all commands become members of commands.

• IdfVersion: The version of the IDF format used in the creation of the file. (Required)

– value: A double-quoted string literal, containing a valid major and minor version
number.

Multiplicity: Exactly 1.
The version of the first public release of Johar will be 1.0. Therefore, initially all Johar
IDFs should contain the declaration IdfVersion = "1.0".

• InitializationMethod: The name of the application engine method used to initialize
the engine.

– value: A lower-case identifier (the name of the application engine method).

Multiplicity: 0 or 1.
Default value: applicationEngineInitialize.

• Table: The structure representing a list of similar entities presented to the user by the
application engine.

– name: A lower-case identifier (the name of the table).

– value: A structure. See Section A.2.7, Sub-attributes of Table.

Multiplicity: 0 or more.

www.manaraa.com

88 Chapter A. Johar Interface Description File (IDF): Format Specification

A.2.2 Sub-attributes of Command

This section describes the attributes that are acceptable sub-attributes of any Command attribute.
In addition, single-stage Commands (commands that have no Stage attribute) can contain any
of the attributes described below in Section A.2.3, Sub-attributes of Stage and Single-Stage
Commands.

• ActiveIfMethod: The name of an application engine method that can be called to
determine if the user should be able to access the command.

– value: A lower-case identifier. This is the method that will be called to determine
if the command is active, i.e. if the user should be allowed to issue the command.

Multiplicity: 0 or 1.
If no ActiveIfMethod attribute is given, then the command is always active.

It is recommended that the ActiveIfMethod is as efficient as possible (e.g. returning
only the value of a field or data member), because it may be called frequently by the
interface interpreter.

• BriefHelp: A brief help message describing the purpose of the command.

– value: A string of 30 characters or fewer, containing no carriage return.

Multiplicity: 0 or 1.
Default value: The Label of the command, truncated to 30 characters, if needed.
This attribute, if given, gives a very brief help message describing the purpose of the
command, suitable for such things as ToolTips.

• CommandMethod: The application engine method that is called to actually carry out the
command.

– value: A lower-case identifier. This is the method that will be called to carry out
the actual command.

Multiplicity: 0 or 1.
Default value: The command name.

• Label: The text describing the Command in the interface.

– value: Any string.

www.manaraa.com

A.2. Allowed Attributes 89

Multiplicity: 0 or 1.
Default value: Derived from the name of the command using standard camel-case
translation (see Section A.4).
The Label, if given, is the text that will appear (possibly with an appended ellipsis,
“. . . ”) on the menu item, button, or other interface element corresponding to the
command.

• MultiLineHelp: A thorough help message describing the purpose of the command.

– value: A string or multi-line text of any length.

Multiplicity: 0 or 1.
Default value: The value of the OneLineHelp attribute.
This attribute, if given, gives a thorough help message. IDF writers wanting to give
thorough help for each parameter of a command should use the MultiLineHelp
attributes of the parameters, as this will promote encapsulation and may (depending on
the interface interpreter) give the user more control of the volume of help given.

• OneLineHelp: A one-line help message describing the purpose of the command.

– value: A string of 80 characters or fewer, containing no carriage return.

Multiplicity: 0 or 1.
Default value: The value of the BriefHelp attribute.
This attribute, if given, gives a help message describing the purpose of the command,
somewhat longer than the BriefHelp. The OneLineHelp messages may be useful for
the interface interpreter to display in a list.

• Prominence: An integer describing how prominently the Command should be shown to
the user.

– value: An integer greater than or equal to 0. Value ranges:

∗ 3000 or more: High prominence. For instance, in a classic GUI, commands
with prominence 3000 or more might be placed on the screen as buttons so that
they are as quickly accessible as possible.

∗ 2000-2999: Normal prominence.

∗ 1000-1999: Reduced prominence.

∗ 0-999: Low prominence. For instance, in a classic GUI, commands with
prominence 0-999 might be placed on a “More commands” popup.

www.manaraa.com

90 Chapter A. Johar Interface Description File (IDF): Format Specification

Multiplicity: 0 or 1.
Default value: 2000.

• Question: A question which may be asked of the user, given the values of the
Parameters and previous Questions in the command.

– name: A lower-case identifier (the name of the question).

– value: A structure. See Section A.2.5, Sub-attributes of Question.

Multiplicity: 0 or more.

• QuitAfter: An indication of whether the interface interpreter running the application
should always terminate after the command terminates.

– value: A Johar boolean (e.g., yes or no). See Section A.3.

Multiplicity: 0 or 1.
Default value: no.
A value of yes means that the interface interpreter should always quit after execution of
the CommandMethod. A value of no means that it should expect more commands, unless
there is a QuitAfterIfMethod which returns true (see below).

• QuitAfterIfMethod: An application engine method that is called to determine
whether the interface interpreter running the application engine should terminate after
the command terminates.

– value: A lower-case identifier (the method to be called to determine quit status).
The method should return a boolean (true if the application should terminate, false
otherwise).

Multiplicity: 0 or 1.
If a QuitAfterIfMethod attribute is present, the indicated method is called after the
CommandMethod is called. If the QuitAfterIfMethod returns true, then the interface
interpreter takes this to be an indication that the application should terminate.

• Stage: One stage in the processing of the Command. Each stage may take separate
Parameters.

– name: A lower-case identifier (the name of the Stage).

– value: A structure. See Section A.2.3, Sub-attributes of Stage and Single-Stage
Commands.

www.manaraa.com

A.2. Allowed Attributes 91

Multiplicity: 0 or more.
A Command can be broken up into several Stages. There can be zero or more explicit
Stage sub-attributes. If there are zero explicit Stage attributes, then one stage is
implicitly defined. All the attributes mentioned in Section A.2.3 which appear as
sub-attributes of the Command are then placed into the one implicitly-defined stage. The
names of the Parameters in all of the Stages in a command must be disjoint.

Each stage in a multi-stage command may be handled at a separate time by an interface
interpreter. A classic GUI interface interpreter, for instance, may present a multi-stage
command using a “wizard”-style dialog box, in which the user can move forward or backward
through the stages by clicking a “next” button. This may facilitate the elicitation of
parameters for infrequently-given commands or commands that have many parameters.

If a Command has more than one Stage, then the interface interpreter may call the
ParameterCheckMethods of each stage separately, and the DefaultValueMethods of each
parameter separately (see below for more thorough information). This gives a mechanism by
which the user can supply values for parameters in one stage, which are then used to compute
the default values of other parameters. Thus, if the application programmer needs to collect
user-input values of parameter A (e.g. input file name) before computing the default value of
parameter B (e.g. output file name), parameter A can be in an earlier stage and parameter B in
a later stage.

A.2.3 Sub-attributes of Stage and Single-Stage Commands

These sub-attributes can appear inside a Stage in a Command. If the command has no explicit
Stages, they can also appear directly inside the Command, in which case they define the sub-
attributes of the one implicit stage of the command.

• Parameter: A piece of data which comes from the user and is relevant to the Command,
such as an integer, floating-point number or string.

– name: A lower-case identifier (the name of the parameter).

– value: A structure. See Section A.2.4, Sub-attributes of Parameter.

Multiplicity: 0 or more.

• ParameterCheckMethod: A method in the application engine that can be called to
check the validity of the stage’s parameters.

www.manaraa.com

92 Chapter A. Johar Interface Description File (IDF): Format Specification

– value: A lower-case identifier. This is the method that will be called to check the
validity of the parameter values. It should return a string value (null or the empty
string if all the parameters are valid, an error message if one or more parameters
are invalid).

Multiplicity: 0 or 1.
If a ParameterCheckMethod is given, then if the user has input invalid values, the
interface interpreter can display the error message and allow the user to edit the erroneous
values they originally gave. The ParameterCheckMethod should not do any processing
related to the main function of the command, since the user may later decide to change
the parameters, or even to cancel the command.

If no ParameterCheckMethod is given, then the parameter values will be checked by
any implicit rules given for the parameter (e.g. the MinValue and MaxValue attributes
for an int parameter).

A.2.4 Sub-attributes of Parameter

This section describes the attributes that are acceptable sub-attributes of any Parameter
attribute.

• BriefHelp: A brief help message describing the meaning of the parameter.

– value: A string of 30 characters or fewer, containing no carriage return.

Multiplicity: 0 or 1.
Default value: The Label of the parameter, truncated to 30 characters, if needed.
This attribute, if given, gives a very brief help message describing the purpose of the
parameter. For instance, a classic GUI could use this as the text of a ToolTip.

• Choices: A string representing the possible choices of values of a parameter of type
choice (see below, attribute Type).

– value: A double-quoted string literal.

Multiplicity: For parameters of type choice, exactly 1. For other parameters, 0.
The string contains the possible choices of values, separated by bar (“|”) characters; e.g.
"portrait|landscape", "clubs|diamonds|hearts|spades". To include a literal
bar character in a choice, the bar should be preceded by a backslash (“\”) character. To
include a literal backslash character in a choice, use two backslashes (“\\”).

www.manaraa.com

A.2. Allowed Attributes 93

• DefaultValue: The default value for the parameter.

– value: A boolean, integer, real number or double-quoted string literal, as
appropriate.

Multiplicity: 0 or 1.
If the user gives no explicit value for a parameter, then the interface interpreter will act
as if they have given the DefaultValue as the value. For a parameter of type choice,
the value must be one of the choices in the Choices attribute string.

• DefaultValueMethod: A method in the application engine to be called to give the
default value for the parameter.

– value: A lower-case identifier (the name of the method to be called to return the
default value).

Multiplicity: 0 or 1. A parameter cannot have both a DefaultValue attribute and a
DefaultValueMethod attribute.
In a Java application engine, the DefaultValueMethod must return a value of type
boolean, long, double or String, as appropriate. For a parameter of type choice,
the value returned must be one of the choices in the Choices attribute string.

• FileConstraint: A constraint on the status of a parameter of type file (see below,
attribute Type).

– value: A lower-case identifier. Accepted values:

∗ mustExist: The file must exist at the time the command is issued.

∗ mustBeReadable: The file must exist and be readable by the application at
the time the command is issued.

∗ mustNotExistYet: The file must not exist at the time the command is issued.

∗ none: No constraint.

Multiplicity: For parameters of type file, 0 or 1. For other parameters, 0.
Default value: none.

• Label: The string that will be used to describe the parameter if and when the user is
asked to enter a value for the parameter.

– value: A double-quoted string literal.

www.manaraa.com

94 Chapter A. Johar Interface Description File (IDF): Format Specification

Multiplicity: 0 or 1.
Default value: Derived from the name of the command using standard camel-case
translation (see Section A.4).
The Label, if given, is the text that will appear to the user to indicate what parameter
they are to enter. For instance, in a classic GUI, this would be text displayed beside the
user-controllable widget used to set the value of the parameter.

• MaxNumberOfChars: The maximum number of characters that can be entered by the
user as the value of a text parameter (see below, attribute Type).

– value: An integer literal greater than or equal to 1; or the lower-case identifier
unlim.

Multiplicity: For parameters of type text, 0 or 1. For other parameters, 0.
Default value: unlim.

• MaxNumberOfLines: The maximum number of lines that can be entered by the user as
the value of a text parameter (see below, attribute Type).

– value: An integer literal greater than or equal to 1; or the lower-case identifier
unlim.

Multiplicity: For parameters of type text, 0 or 1. For other parameters, 0.
Default value: 1.

• MaxNumberOfReps: The maximum number of repetitions of the parameter that the user
can give.

– value: An integer literal greater than or equal to 1, giving the maximum number of
repetitions allowed for this parameter; or the lower-case identifier unlim.

Multiplicity: 0 or 1.
Default value: 1.
The user is not allowed to give more than MaxNumberOfReps repetitions of the
parameter. See MinNumberOfReps for more detail.

• MaxValue: The maximum possible value of a parameter of type int or float (see
below, attribute Type).

– value: An integer or real number literal.

www.manaraa.com

A.2. Allowed Attributes 95

Multiplicity: For parameters of type int or float, 0 or 1. For other parameters, 0.
Default value: The maximum value representable in a signed 64-bit integer (resp. 64-bit
floating-point) number.

• MinNumberOfReps: The minimum number of repetitions of the parameter that the user
can give (see below).

– value: An integer literal greater than or equal to 0, giving the minimum number of
repetitions allowed for this parameter.

Multiplicity: 0 or 1.
Default value: 1.
MinNumberOfReps must be less than or equal to MaxNumberOfReps.

The minimum and maximum number of repetitions indicate how many times the
parameter can be repeated. If a Parameter has a DefaultValue or
DefaultValueMethod, then any repetitions up to the MinNumberOfReps that are not
explicitly changed by the end user are filled in by that value. If the Parameter has
neither a DefaultValue nor a DefaultValueMethod, and MinNumberOfReps is
greater than 0, then the end user is required to fill in at least MinNumberOfReps
repetitions.

For example, a command which takes a person’s name as a parameter might have a
Parameter of type textwith no default value and a minimum and maximum number of
repetitions equal to 1, obliging the user to enter a name. As another example, a command
to show the differences between two files might take exactly two file parameters. To
enforce this restriction, the programmer might create a Parameter with type file and
with MinNumberOfReps and MaxNumberOfReps both equal to 2.

• MinValue: The minimum possible value of a parameter of type int or float (see below,
attribute Type).

– value: An integer or real number literal.

Multiplicity: For parameters of type int or float, 0 or 1. For other parameters, 0.
Default value: The minimum value representable in a signed 64-bit integer (resp. 64-bit
floating-point) number.
MinValue must be less than or equal to MaxValue.

• MultiLineHelp: A thorough help message describing the meaning of the parameter.

www.manaraa.com

96 Chapter A. Johar Interface Description File (IDF): Format Specification

– value: A string or multi-line text of any length.

Multiplicity: 0 or 1.
Default value: The OneLineHelp of the parameter.
This attribute, if given, gives a thorough help message regarding the parameter.

• OneLineHelp: A one-line help message describing the meaning of the parameter.

– value: A string of 80 characters or fewer, containing no carriage return.

Multiplicity: 0 or 1.
Default value: The BriefHelp of the parameter.
This attribute, if given, gives a help message describing the purpose of the parameter,
somewhat longer than the BriefHelp. The OneLineHelp messages may be useful for
the interface interpreter to display in a list.

• ParentParameter: The name of another parameter that controls the existence of the
current parameter.

– value: A lower-case identifier (the name of the parent parameter).

Multiplicity: 0 or 1.
This attribute and ParentValue are used for parameters that only make sense when
some other parameter has a certain value. In this case the other parameter is referred to
as the parent parameter.

As an example, when printing a document, the user may choose to “print to a file”,
in which case the user must enter a file name parameter. However, if the user does not
choose to print to a file, then there is no reason to expect the user to enter a file name. This
situation can be set up by giving the print command two parameters: printToFile, a
boolean parameter, and outputFileName, a file parameter whose parent parameter
is printToFile and whose ParentValue is true. If the parent parameter does not
have the indicated ParentValue, then the user is not required to enter any value for
the parameter, regardless of any information about the minimum number of repetitions
required.

Circular ParentParameter references are not allowed. That is, a chain of
ParentParameter references must end in a parameter with no ParentParameter.

• ParentValue: The value of the parent parameter that triggers the existence of this
parameter.

www.manaraa.com

A.2. Allowed Attributes 97

– value: An integer, floating-point or string literal, as appropriate.

Multiplicity: For parameters with a ParentParameter value, exactly 1. For other
parameters, 0.
See ParentParameter for more detail.

• Prominence: An integer describing how prominently the Parameter should be shown
to the user.

– value: An integer greater than or equal to 0. Value ranges:

∗ 3000 or more: High prominence. For instance, in a classic GUI, parameters
with prominence 3000 or more may be placed in the most prominent location
in the dialog box.

∗ 2000-2999: Normal prominence.

∗ 1000-1999: Reduced prominence.

∗ 0-999: Low prominence. For instance, in a classic GUI, parameters with
prominence 0-999 might be accessed only through an “Advanced” button in
the parameter dialog box.

Multiplicity: 0 or 1.
Default value: 2000.

• RepsModel: A description of the intended model for the repetitions of the parameter.

– value: A lower-case identifier. Accepted values:

∗ set: The repetitions of the parameter are considered to be a set of disjoint
values. The interface interpreter does not have to keep track of the order in
which the user has input the values, and does not have to load them in the Gem
in the order that the user has given them. The interface interpreter does not
have to provide a way for the user to input multiple repetitions that have the
same value.

∗ multiset: The repetitions of the parameter are considered to be a set of
values, with one repetition possibly having the same value as another. The
interface interpreter does not have to keep track of the order in which the user
has input the values, and does not have to load them in the Gem in the order
that the user has given them. However, it does have to provide the user with
the ability to give multiple repetitions with the same value.

www.manaraa.com

98 Chapter A. Johar Interface Description File (IDF): Format Specification

∗ sequence: The repetitions of the parameter are considered to be a sequence
of values, with one repetition possibly having the same value as another. The
interface interpreter must load them in the Gem in the order that the user has
given them.

Multiplicity: 0 or 1.
Default value: set.

The RepsModelmay be used by an interface interpreter in order to structure the interface.
For instance, in a classic GUI, a choice parameter with MaxNumberOfReps = unlim
and RepsModel = set may be presented as a set of radio buttons, any of which can
be turned on. In contrast, a file parameter with MaxNumberOfReps = unlim and
RepsModel = sequence must be presented so that the user can specify a sequence of
files, for instance so that the application engine method is guaranteed to process them in
that order.

• SourceTable: The Table associated with a tableEntry parameter (see below,
attribute Type).

– value: A lower-case identifier (the name of the table from which the user selects
values for the parameter).

Multiplicity: For a parameter of type TableEntry, exactly 1. For other parameters, 0.

• Type: One of a few values describing what kind of parameter it is.

– value: A lower-case identifier, signifying the type of the parameter. Possible values
are:

∗ boolean: Either true or false.

∗ choice: One of a fixed number of choices. Every parameter with a Type of
choice must have a Choices attribute.

∗ date: A calendar date.

∗ file: A file name.

∗ float: A floating-point number.

∗ int: An integer.

∗ text: A text string.

∗ tableEntry: The parameter is an entry from one of the tables declared in the
IDF. Every parameter with a Type of tableEntry must have a SourceTable
attribute.

www.manaraa.com

A.2. Allowed Attributes 99

∗ timeOfDay: A time of day.

Multiplicity: exactly 1.

A.2.5 Sub-attributes of Question

This section describes the attributes that are acceptable sub-attributes of any Question
attribute.
Questions are similar to Parameters. However, the intention is that the system expects a

value for a Question only when an application engine method judges that a value is required,
based on the values of the Parameters. An interface interpreter may also provide a “cancel”
option when asking a question, to allow the user to cancel the command in response to the
question.

• AskIfMethod: The application engine method to call in order to see if the question
should be asked. (Required)

– value: A lower-case identifier, the name of the method to call to determine whether
to require a value for the Question.

Multiplicity: exactly 1.
The application engine programmer can assume that the values for the Parameters of
the command, and all previous Questions, are accessible from the Gem when the ask-if
method is called.

For example, say that the programmer of an editor application wants the question “File
has been modified. Save changes?” to be asked at appropriate points (for instance,
for the close, new and quit commands). They could do this by adding the following
Question to all appropriate commands:

Question saveIfModified = {

Type = boolean

Label = "File has been modified. Save changes?"

AskIfMethod = fileModified

}

• The following attributes of Parameter are also acceptable sub-attributes of any
Question:

– BriefHelp

www.manaraa.com

100 Chapter A. Johar Interface Description File (IDF): Format Specification

– Choices

– DefaultValue

– DefaultValueMethod

– FileConstraint

– Label

– MaxNumberOfChars

– MaxNumberOfLines

– MaxValue

– MinValue

– MultiLineHelp

– OneLineHelp

– Prominence

– SourceTable

– Type

• The following attributes of Parameter are not acceptable sub-attributes of any Question:

– MaxNumberOfReps

– MinNumberOfReps

– ParentParameter

– ParentValue

– RepsModel

In addition, the SourceTable of any question of type tableEntry must refer to a non-
browsable table.

A.2.6 Sub-attributes of CommandGroup

This section describes the attributes that are acceptable sub-attributes of any CommandGroup
attribute.

• Label: The text describing the CommandGroup in the interface.

– value: Any string.

www.manaraa.com

A.2. Allowed Attributes 101

Multiplicity: 0 or 1.
Default value: Derived from the name of the command group using standard camel-case
translation (see Section A.4).
The Label, if given, is the text that will appear on the menu heading, button, or other
interface element corresponding to the command group.

• Member: One of the commands which is a member of this CommandGroup.

– value: a lower-case identifier specifying one command that is a member of this
command group.

Multiplicity: 1 or more.

A.2.7 Sub-attributes of Table

This section describes the attributes that are acceptable sub-attributes of any Table attribute.

• Browsable: A value indicating whether the user should be able to browse the table.

– value: A Johar boolean (e.g., yes or no). See Section A.3.

Default value: yes.

Some tables are intended to be presented to the user for them to browse and select rows
in, separately from the processing of a given command. Others are simply intended
to be tables of candidate values for parameters. The former kind of table is referred
to as “browsable”, the latter “not browsable”. The Browsable attribute controls this
behaviour.

• DefaultHeading: The default heading of the table.

– value: A double-quoted string or long text.

Default value: The Label of the table.
This attribute gives the heading that will be associated with the table if no heading is set
by the application engine. If no DefaultHeading attribute is given, then the heading
will be derived from the name of the table using standard camel-case translation (see
Section A.4).

• Label: The text describing the Table in the interface.

– value: Any string.

www.manaraa.com

102 Chapter A. Johar Interface Description File (IDF): Format Specification

Multiplicity: 0 or 1.
Default value: Derived from the name of the table using standard camel-case translation
(see Section A.4).
The Label, if given, is the text that will appear on the menu item, button, tab, or other
interface element corresponding to the table.

A.2.8 Generated Attribute Values

When an IDF is read, it is processed into an internal form that can be used by an interface
interpreter. For convenience, default values are generated automatically for some sub-attributes
if they are not given explicitly in the IDF. The descriptions of these default values are given
above, in the sections pertinent to the individual parameters.

The label and help attributes, if not given, are generated in a specific sequence. The
sequence, along with the default values generated, are as follows.

• Label: The de-camel-cased version of the name of the command, command group,
parameter or question.

• BriefHelp: The Label for the command, parameter, or question, truncated to 30
characters if necessary.

• OneLineHelp: The value of BriefHelp.

• MultiLineHelp: The value of OneLineHelp.

A.3 Johar Booleans

In some places in Johar IDFs, it is possible to give a boolean value. In all of these places, the
following values are acceptable:

• yes, Yes, YES, true, True, or TRUE, all of which mean the same thing.

• no, No, NO, false, False, or FALSE, all of which mean the same thing.

This flexibility is intended to mirror the flexibility which interface interpreters are encouraged
to have in accepting boolean values from end users of the applications.

www.manaraa.com

A.4. Camel Case Translation 103

Camel-Case Identifier Translation
add Add
saveAs Save as

findInThisPage Find in this page
inputTextFile Input text file
inputXMLFile Input x m l file
inputXmlFile Input xml file

Figure A.2: Examples of camel-case translation.

A.4 Camel Case Translation

To simplify interface description files, some values of attributes of commands and parameters
are translated into strings shown to the user by following an algorithm for translating camel-
case identifiers. This section describes this algorithm.

“Camel case” is the phrase used to refer to the practice of writing identifiers with mixed
upper- and lower-case letters but no underscores. Often, when camel case is used, each upper-
case letter is intended to start a word. The algorithm used for camel-case translation is therefore
as follows.

(1) Separate the words in the identifer by single spaces, assuming that each upper-case letter
starts a new word.

(2) Capitalize the first letter of the resulting string if it is not capitalized.

(3) Translate all the rest of the letters in the resulting string to lower-case.

Figure A.2 shows some examples of the effect of the camel-case translation algorithm. The
first four examples are likely to be what the developer wants; the last two are unlikely to be
what the developer wants. If the effect of the translation algorithm is not what the developer
wants, then they can use the Label attribute to achieve what they want – for instance, by using
a parameter name inputXMLFile with the attribute Label = "Input XML file".

www.manaraa.com

Appendix B

Interface Interpreters (IntIs):
Requirements Specification

This document describes the requirements that must be met by all Johar interface interpreters
(IntIs). It is assuming that the IntI is written in Java, but similar requirements apply to IntIs
written in any language.

In this document, the words must and must not are in italics and indicate normative
statements (strict requirements for the IntI). The words may and does not have to are also in
italics, but indicate behaviour that is permitted or not forbidden; they are used for clarity. The
words should and should not are also in italics, and indicate behaviour that is recommended
but not necessary.

The requirements in this document are numbered 1, 2, 3 and so on. They will be referred
to in other documents as IntI-R1, IntI-R2, IntI-R3, and so on.

B.1 Core Steps

This section describes the sequence of steps that must be taken by an IntI in interacting with
the IDF, the GemSetting, and the application engine. We refer to these as the “core steps”.

(1) A given IntI may take many steps other than the core steps, and may interact with the user
in many ways outside of these core steps (for instance, in providing help or facilitating
table browsing).

(2) However, whenever it interacts with the IDF, the GemSetting and the application engine,
the method calls must follow the pattern of the core steps.

Core steps:

(3) Initialization phase:

104

www.manaraa.com

B.1. Core Steps 105

(i) The IntI must first get a johar.idf.Idf object by using the method
johar.idf.Idf.idfFromFile(fname), where the file name argument is the
name of an XML or IDF-format file.

(ii) If johar.idf.Idf.idfFromFile(fname) throws an IdfFormatException,
then the IntI must show the error message and exit.

(iii) If the IDF’s IdfVersion is greater than that supported by the IntI, then the IntI
must show an error message and exit.

(iv) The IntI must then call GemFactory.newGemSetting(), using the Idf object
returned by idfFromFile as the first parameter and a valid ShowTextHandler as
the second parameter.

(v) The IntI must then call GemSetting.validate() on the GemSetting returned by
GemFactory.

(vi) If GemSetting.validate() throws an IdfFormatException, the IntI must

show the error message and exit.

(vii) The IntI must then call GemSetting.initializeAppEngine(). (This will set up
the Gem tables and call the InitializationMethod for the app engine.)

(4) After the initialization phase, the IntI may continue with the processing described below.

(5) The IntI may then perform the Command Loop (see below) as many times as needed,
until the IntI terminates.

(6) At any time while executing the Command Loop, the IntI may exit its current iteration
and begin a new iteration. [Rationale: the user may cancel the command processing at
any time.]

The Command Loop consists of the following steps:

(7) The IntI may call the ActiveIfMethods of any commands that have them.

(8) It must then call GemSetting.selectCurrentCommand(cmdName). If cmdName
corresponds to a command with an ActiveIfMethod, then that method must be one
that was called since the beginning of this iteration of the Command Loop. [Rationale:
the active status of a command may have been changed by the effect of the previous
command.]

(9) It must then call GemSetting.selectCurrentStage(0). [Rationale: the parameter
values for one stage must be loaded and checked before the default values of the

www.manaraa.com

106 Chapter B. Interface Interpreters (IntIs): Requirements Specification

parameters in the next stage are obtained, to ensure correct communication with the
application engine methods of multi-stage commands.]

(10) The IntI may then perform the Stage Loop (see below) as many times as needed, at least
until MinNumberOfReps repetitions of of every parameter of every stage of the command
has been loaded into the GemSetting.

(11) The IntI may continue to perform the Stage Loop after a value for every parameter of
every stage of the command has been loaded.

(12) The IntI must continue to perform the Stage Loop until every ParameterCheckMethod,
in every stage of the command that has one, has returned null or the empty string.

(13) The IntI must perform the following steps for every question in the current command,
from the first question specified to the last question specified.

(i) The IntI must call the AskIfMethod of the question.

(ii) If the AskIfMethod returns true, and the question has a DefaultValueMethod,
the IntI must call the DefaultValueMethod of the question.

(iii) If the AskIfMethod returns true, the IntI must load a value for the question into
the GemSetting.

(14) The IntI must call the CommandMethod for the command.

(15) The IntI must ensure that the showText text from the command has been effectively
communicated to the user. [Rationale: the showText from the last command executed
in a run of the application may be important, and must not be rendered inaccessible by
the termination of the application.]

(16) If the command’s QuitAfter attribute is false, but the command has a
QuitAfterIfMethod, then the IntI must call that method.

(17) If the command’s QuitAfter attribute is true, or the command has a
QuitAfterIfMethod which has returned true, then the IntI must terminate.

See Table B.1 for the Java type that a Java IntI must load as the value of a parameter, depending
on what Type the parameter is.

www.manaraa.com

B.1. Core Steps 107

Parameter Type Java type Comment
boolean boolean

choice java.lang.String One of the choices
date java.util.Calendar

file java.io.File

float double The floating-point type with the maximum
range and precision in Java

int long The integer type with the maximum
range and precision in Java

text java.lang.String

tableEntry int The row number (starting with 0) of one row
that the user has selected

timeOfDay java.util.Calendar

Table B.1: Bindings of Johar parameter types to Java types.

The Stage Loop consists of the following steps:

(18) At any time, the IntI may call the DefaultValueMethod of any parameter in the current
stage.

(19) At any time, the IntI may load values for repetitions of any parameter in the current stage.

(20) If the IntI loads a value for a repetition of a parameter with a DefaultValue or
DefaultValueMethod, and the value was not selected directly by the user, then the
value must come from the DefaultValue or from a call to the DefaultValueMethod
made since the beginning of this iteration of the Stage Loop. [Rationale: the previous
stage’s ParameterCheckMethod may have caused a change to the value returned by
the parameter’s DefaultValueMethod.]

(21) The IntI must load at least MinNumberOfReps repetitions of each parameter in the
current stage before calling the current stage’s ParameterCheckMethod, unless the
parameter has a ParentParameter whose value is not the parameter’s ParentValue.

(22) At any time after that, the IntI may call the current stage’s ParameterCheckMethod, if
it has one.

(23) If the current stage has a ParameterCheckMethod, then the IntI must call it at least
once.

(24) If the current stage has a ParameterCheckMethod, then the IntI must not load any
parameter values between the time it last calls the ParameterCheckMethod and the

www.manaraa.com

108 Chapter B. Interface Interpreters (IntIs): Requirements Specification

time it next calls GemSetting.selectCurrentStage().

(25) Finally, the IntI may call GemSetting.selectCurrentStage() with a parameter that
is either one greater than the index number of the current stage, or less than the index
number of the current stage.

B.2 Other Requirements

Requirements concerning values of parameters and questions:

(26) The IntI must provide a way for the user to select values for parameters and questions for
any command.

(27) For a parameter or question of type choice, any value loaded by the IntI must be a choice
from the parameter’s or question’s Choices string.

(28) For a parameter or question of type file, any value loaded by the IntI must respect the
parameter’s or question’s FileConstraint.

(29) For a parameter or question of type text, any value loaded by the IntI must respect the
parameter’s or question’s MaxNumberOfChars and MaxNumberOfLines attribute
values.

(30) For a parameter or question of type int or float, any value loaded by the IntI must

respect the parameter’s or question’s MaxValue and MinValue attribute values.

Requirements concerning repetitions of parameters:

(31) The IntI must provide a way for the user to select multiple values for repetitions of every
parameter of a command, up to the parameter’s MaxNumberOfReps.

(32) For every parameter, the IntI must load at least MinNumberOfReps repetitions for the
parameter before calling the CommandMethod of the command, unless the parameter has
a ParentParameter whose value is not the ParentValue of the parameter.

(33) For every parameter, the IntI must not load a value for the parameter if the parameter has
a ParentParameter whose value is not the ParentValue of the parameter.

(34) For every parameter, the IntI must load at most MaxNumberOfReps repetitions for the
parameter before calling the CommandMethod of the command.

www.manaraa.com

B.2. Other Requirements 109

(35) If the RepsModel of a parameter is set, then the IntI may load only one repetition of
each value selected by the user.

(36) If the RepsModel of a parameter is multiset or sequence, then the IntI must load the
number of repetitions of each value selected by the user.

(37) If the RepsModel of a parameter is set or multiset, then the IntI may load values in
any order.

(38) If the RepsModel of a parameter is sequence, then the IntI must load values in the order
specified by the user.

Requirements concerning user interface structure:

(39) The IntI may use the value of Application as a unique identifier of the application
currently being run.

(40) The IntI may use the application’s command groups in order to structure the interface.

(41) The IntI may use the Prominence of commands, etc. in order to structure the interface.

(42) The IntI should use the Label of a command, parameter, or question as a description,
where needed in the interface.

(43) The IntI may use the RepsModel of any parameter in order to structure the interface.

(44) The IntI should provide a convenient way for the user to select valid values for parameters
or questions of type date, file, and timeOfDay.

Other IntI requirements:

(45) The IntI must provide access to all commands in the application.

(46) For a command with any stage with any parameter of type tableEntry, where the
SourceTable is browsable, the IntI must not select the command as the current
command unless the user has selected at least MinNumberOfReps entries in the
parameter’s SourceTable.

(47) The IntI must allow the user to access, browse and select rows in all browsable tables
that are not currently hidden.

(48) The IntI must not allow the user to access, browse or select rows in non-browsable tables.

www.manaraa.com

110 Chapter B. Interface Interpreters (IntIs): Requirements Specification

(49) The IntI must not allow the user to access, browse or select rows in tables that are
currently hidden.

(50) The IntI must provide access to all the help messages provided in the IDF.

(51) The IntI may use any of the Label, BriefHelp, OneLineHelp, and MultiLineHelp
messages provided in the IDF wherever they are needed.

www.manaraa.com

Appendix C

Johar XML Schema Document

The Johar XSD (johar.xsd) is used for validating the XML equivalent of an IDF.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<!--

Design:

1. Every sub-attribute can be given in any order, so every

sub-attribute is declared as an "xs:choice".

2. Each "xs:choice" is given an unbounded number of occurrences.

3. The Java code checks to make sure that there are enough and

not too many of each sub-attribute.

This design seems to be needed in order to avoid either a long

XSD file or imposing an order on the sub-attributes.

-->

<!-- The overall format of a Johar Interface Declaration File (IDF) -->

<xs:element name="Johar">

<xs:complexType>

<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:element name="Application" type="upperIdentifier"/>

<xs:element name="ApplicationEngine" type="xs:string"/>

<xs:element name="Command" type="CommandType"/>

<xs:element ref="CommandGroup"/>

<xs:element name="IdfVersion" type="xs:string"/>

<xs:element name="InitializationMethod" type="lowerIdentifier"/>

<xs:element ref="Table"/>

</xs:choice>

</xs:complexType>

</xs:element>

111

www.manaraa.com

112 Chapter C. Johar XML Schema Document

<!-- ========== BEGIN declarations relevant to Commands ========== -->

<!-- What can go inside a Command declaration -->

<xs:complexType name="CommandType">

<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:element name="ActiveIfMethod" type="lowerIdentifier"/>

<xs:element ref="BriefHelp"/>

<xs:element name="CommandMethod" type="lowerIdentifier"/>

<xs:element name="Label" type="xs:string"/>

<xs:element name="MultiLineHelp" type="xs:string"/>

<xs:element ref="OneLineHelp"/>

<xs:element name="Parameter" type="paramType"/>

<xs:element name="ParameterCheckMethod" type="lowerIdentifier"/>

<xs:element name="Prominence" type="nonNegativeInt"/>

<xs:element name="Question" type="questionType"/>

<xs:element name="QuitAfter" type="joharBoolean"/>

<xs:element name="QuitAfterIfMethod" type="lowerIdentifier"/>

<xs:element name="Stage" type="StageContents"/>

</xs:choice>

<xs:attribute name="name" type="xs:string"/>

</xs:complexType>

<!-- What can go inside a Stage declaration -->

<xs:complexType name="StageContents">

<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:element name="Parameter" type="paramType"/>

<xs:element name="ParameterCheckMethod" type="lowerIdentifier"/>

</xs:choice>

<xs:attribute name="name" type="xs:string"/>

</xs:complexType>

<!-- ========== END declarations relevant to Commands ========== -->

<!-- BEGIN declarations relevant to Parameters and Questions -->

<!-- What can go inside a Parameter declaration -->

<xs:complexType name="paramType">

www.manaraa.com

113

<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:element ref="BriefHelp"/>

<xs:element name="Choices" type="xs:string"/>

<xs:element name="DefaultValue" type="xs:string"/>

<xs:element name="DefaultValueMethod" type="lowerIdentifier"/>

<xs:element name="FileConstraint">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="mustBeReadable"/>

<xs:enumeration value="mustExist"/>

<xs:enumeration value="mustNotExistYet"/>

<xs:enumeration value="none"/>

</xs:restriction>

</xs:simpleType>

</xs:element>

<xs:element name="Label" type="xs:string"/>

<xs:element name="MaxNumberOfChars" type="positiveInt"/>

<xs:element name="MaxNumberOfLines" type="positiveInt"/>

<xs:element name="MaxNumberOfReps" type="positiveInt"/>

<xs:element name="MaxValue" type="xs:decimal"/>

<xs:element name="MinNumberOfChars" type="nonNegativeInt"/>

<xs:element name="MinNumberOfReps" type="nonNegativeInt"/>

<xs:element name="MinValue" type="xs:decimal"/>

<xs:element name="MultiLineHelp" type="xs:string"/>

<xs:element ref="OneLineHelp"/>

<xs:element name="ParentParameter" type="lowerIdentifier"/>

<xs:element name="ParentValue"/>

<xs:element name="Prominence" type="nonNegativeInt"/>

<xs:element name="RepsModel">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="set"/>

<xs:enumeration value="multiset"/>

<xs:enumeration value="sequence"/>

</xs:restriction>

</xs:simpleType>

</xs:element>

<xs:element name="SourceTable" type="lowerIdentifier"/>

www.manaraa.com

114 Chapter C. Johar XML Schema Document

<xs:element name="Type">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="boolean"/>

<xs:enumeration value="choice"/>

<xs:enumeration value="date"/>

<xs:enumeration value="file"/>

<xs:enumeration value="float"/>

<xs:enumeration value="int"/>

<xs:enumeration value="text"/>

<xs:enumeration value="tableEntry"/>

<xs:enumeration value="timeOfDay"/>

</xs:restriction>

</xs:simpleType>

</xs:element>

</xs:choice>

<xs:attribute name="name" type="xs:string"/>

</xs:complexType>

<!-- What can go inside a Question declaration -->

<xs:complexType name="questionType">

<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:element name="AskIfMethod" type="lowerIdentifier"/>

<xs:element ref="BriefHelp"/>

<xs:element name="Choices" type="xs:string"/>

<xs:element name="DefaultValue" type="xs:string"/>

<xs:element name="DefaultValueMethod" type="lowerIdentifier"/>

<xs:element name="FileConstraint">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="mustBeReadable"/>

<xs:enumeration value="mustExist"/>

<xs:enumeration value="mustNotExistYet"/>

<xs:enumeration value="none"/>

</xs:restriction>

</xs:simpleType>

</xs:element>

<xs:element name="Label" type="xs:string"/>

www.manaraa.com

115

<xs:element name="MaxNumberOfChars" type="positiveInt"/>

<xs:element name="MaxNumberOfLines" type="positiveInt"/>

<xs:element name="MaxValue" type="xs:decimal"/>

<xs:element name="MinNumberOfChars" type="nonNegativeInt"/>

<xs:element name="MinValue" type="xs:decimal"/>

<xs:element name="MultiLineHelp" type="xs:string"/>

<xs:element ref="OneLineHelp"/>

<xs:element name="Prominence" type="nonNegativeInt"/>

<xs:element name="SourceTable" type="lowerIdentifier"/>

<xs:element name="Type">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="boolean"/>

<xs:enumeration value="choice"/>

<xs:enumeration value="date"/>

<xs:enumeration value="file"/>

<xs:enumeration value="float"/>

<xs:enumeration value="int"/>

<xs:enumeration value="text"/>

<xs:enumeration value="tableEntry"/>

<xs:enumeration value="timeOfDay"/>

</xs:restriction>

</xs:simpleType>

</xs:element>

</xs:choice>

<xs:attribute name="name" type="xs:string"/>

</xs:complexType>

<!-- END declarations relevant to Parameters and Questions -->

<!-- What can go inside a CommandGroup declaration -->

<xs:element name="CommandGroup">

<xs:complexType>

<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:element name="Label" type="xs:string"/>

<xs:element name="Member" type="xs:string"/>

</xs:choice>

<xs:attribute name="name" type="xs:string"/>

</xs:complexType>

www.manaraa.com

116 Chapter C. Johar XML Schema Document

</xs:element>

<!-- What can go inside a Table declaration -->

<xs:element name="Table">

<xs:complexType>

<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:element name="Browsable" type="joharBoolean"/>

<xs:element name="DefaultColumnNames" type="xs:string"/>

<xs:element name="DefaultHeading" type="xs:string"/>

<xs:element name="Label" type="xs:string"/>

</xs:choice>

<xs:attribute name="name" type="xs:string"/>

</xs:complexType>

</xs:element>

<!-- Declarations common to many of the above -->

<xs:element name="BriefHelp" type="xs:string"/>

<xs:element name="OneLineHelp" type="xs:string"/>

<xs:simpleType name="joharBoolean">

<xs:restriction base="xs:normalizedString">

<xs:enumeration value="yes"/>

<xs:enumeration value="no"/>

<xs:enumeration value="true"/>

<xs:enumeration value="false"/>

<xs:enumeration value="Yes"/>

<xs:enumeration value="No"/>

<xs:enumeration value="True"/>

<xs:enumeration value="False"/>

<xs:enumeration value="YES"/>

<xs:enumeration value="NO"/>

<xs:enumeration value="TRUE"/>

<xs:enumeration value="FALSE"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="positiveInt">

<xs:restriction base="xs:integer">

<xs:minInclusive value="1"/>

www.manaraa.com

117

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="nonNegativeInt">

<xs:restriction base="xs:integer">

<xs:minInclusive value="0"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="lowerIdentifier">

<xs:restriction base="xs:string">

<xs:pattern value="[\s]*[a-z]([a-zA-Z0-9])*[\s]*"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="upperIdentifier">

<xs:restriction base="xs:string">

<xs:pattern value="[\s]*[A-Z]([a-zA-Z0-9])*[\s]*"/>

</xs:restriction>

</xs:simpleType>

</xs:schema>

www.manaraa.com

Appendix D

Report On The Review Of Johar-Related
Documents

The outcome of our review is presented below. For clarity, classes in the johar.idf package
and the XML Schema Document (johar.xsd) are italicized in the table, while attributes are
printed in Typewriter font. Also, “IDF Format Specification” is abbreviated as “IDF Format
Spec.”, while “Interface Interpreter Specification” is abbreviated as “IntI Spec.”.

Section Attribute Sentence Violation
2.1 CommandGroup A Command cannot

appear as a member of
more than one
CommandGroup.

There is no statement in
IdfCommandGroup that
checks for this condition.
Members of a
CommandGroup are only
added to a
CommandGroup vector
without first checking if
a member already exists
in other vectors.

2.1 InitializationMethod The name of the
application engine
method used to
initialize the engine.

This attribute is not
available in current
johar.xsd version, and
not captured in Idf.

118

www.manaraa.com

119

2.2 CommandMethod IDF Format Spec.:
Single-stage Commands
(commands that have
no Stage attribute) can
contain any of the
attributes described
below in Section 2.3,
Sub-attributes of
Stage and
Single-Stage
Commands.

Intl Spec.: The IntI
must call the
CommandMethod for
the command.

These sentences imply
that the CommandMethod
should appear at most
once within a Command
attribute (or a
single-stage command),
and not within the Stage
attribute (if any) in the
Command. In the Johar
source code, the value of
a CommandMethod is
extracted in the IdfStage
class. I think the current
IdfStage was written with
the mindset of
single-staged commands.
Each instance of IdfStage
represents each stage in
the Command attribute.
Thus, an issue will arise
if an application
developer puts a
CommandMethod in one
or more Stages, which
will be valid according to
the present code. Also,
the johar.xsd supports
each Stage to have a
CommandMethod.

2.2 Label Same as the sentence in
the IDF Format Spec.
as stated in the 3rd row
above

Same violation as the
third row above, except
that I refer to the Label
attribute instead of
CommandMethod.

2.2 Prominence Default value: 2000 Default value specified in
IdfCommand is 1000.

www.manaraa.com

120 Chapter D. Report On The Review Of Johar-Related Documents

2.2 Question Same as the sentence in
the IDF Format Spec.
as stated in the 3rd row
above

Can the Question
attribute appear in each
Stage? If no, then
IdfStage and johar.xsd
implemented this
concept wrongly.
Otherwise, they are
correct.

2.2 Stage The names of the
Parameters in all of
the Stages in a
Command must be
disjoint.

The current
implementation of
IdfStage only extracts
and stores the names of
the parameters for each
stage. This condition is
not explicitly tested for.

2.3 ParameterCheckMethod In the current IdfStage,
there is a mistake in this
attribute’s name while
extracting its value. The
name is specified as
“parameterCheckMethod”,
instead of
ParameterCheckMethod.
Since XML is
case-sensitive, the value
in the
ParameterCheckMethod

element will not be read.
2.3 Parameter

ParameterCheckMethod

These sub-attributes
can appear inside a
Stage in a Command

In the johar.xsd, the
attributes of a Stage are:
CommandMethod, Label,
Parameter,
ParameterCheckMethod,
and Question. This is a
violation.

2.2 and 2.4 BriefHelp

OneLineHelp

There is no conditional
expression testing for the
maximum length of
BriefHelp and
OneLineHelp in both
IdfCommand and
IdfParameter.

www.manaraa.com

121

2.4 FileConstraint Multiplicity: For
parameters of type file,
0 or 1.

In IdfParameter, the
multiplicity specified is
1.

2.4 FileConstraint Accepted values:

mustExist: The file
must exist at the time
the command is issued.

mustBeReadable:
The file must exist and
be readable by the
application at the time
the command is issued.

mustNotExistYet:
The file must not exist
at the time the
command is issued.

none: No constraint.

Value none is not part of
accepted values specified
in johar.xsd.

2.4 Label Default value: Derived
from the name of the
command using
standard camel-case
translation.

The default value is
derived from the name of
the parameter, as
specified in
IdfParameter.

2.4 MaxNumberOfChars

MaxNumberOfReps

Value: An integer
literal greater than or
equal to 1; or the
lower-case identifier
unlim

There is no statement in
the IdfElement class to
check for unlim in order
to replace it with, for
instance,
“Integer.MAX VALUE”.

2.4 MaxNumberOfLines The maximum number
of lines that can be
entered by the user as
the value of a text
parameter.

There is no statement
that extracts the value of
MaxNumberOfLines

(and that specifies the
default value) in
IdfParameter.

2.4 MinNumberOfReps MinNumberOfReps

must be less than or
equal to
MaxNumberOfReps.

This condition is not
checked for in the Idf*
classes.

www.manaraa.com

122 Chapter D. Report On The Review Of Johar-Related Documents

2.4 MinValue MinValue must be less
than or equal to
MaxValue.

This condition is not
checked for in the Idf*
classes.

2.4 Prominence Default value: 2000 Default value specified in
IdfParameter is 1000.

2.4 RepsModel Default value: set Default value specified in
IdfParameter is the
empty string.

2.4 AskIfMethod Multiplicity: exactly 1 The maximum number
of occurrence specified
in johar.xsd is
“unbounded”.

2.5 Question The following
attributes of
Parameter are not
acceptable
sub-attributes of any
Question:
– MaxNumberOfReps
– MinNumberOfReps
– ParentParameter
– ParentValue
– RepsModel

Both johar.xsd and
IdfQuestion violate this
rule. In johar.xsd,
“questionType” simply
extended “paramType”
without constraints,
while IdfQuestion
extended IdfParameter
without any restriction or
constraints.

2.6 Label Label: The text
describing the
CommandGroup in the
interface.

Label is not part of the
attributes captured by
both IdfCommandGroup
and johar.xsd.

2.7 Label Label: The text
describing the Table
in the interface.

Label is not part of the
attributes captured by
both IdfTable and
johar.xsd.

www.manaraa.com

123

2.7 DefaultHeading Default value: The
Label of the table.

This attribute gives the
heading that will be
associated with the
table if no heading is
set by the application
engine. If no
DefaultHeading

attribute is given, then
the heading will be
derived from the name
of the table using
standard camel-case
translation.

An empty string is
specified as the default
value in IdfTable.

Other Observations:

• MinNumberOfChars is not specified in the IDF Format Specification document, but
captured in IdfParameter.

• Mnemonic is not specified in the IDF Format Specification document, but captured in
both johar.xsd and IdfCommandGroup.

• The maximum number of occurrence specified for the DefaultHeading attribute of
Table in johar.xsd is unbounded. Thus, there would not be any error if an application
developer specifies more than one DefaultHeading attribute in the IDF.

• IdfParameter is used capture the sub-attributes of both Parameter and Question
(except AskIfMethod). Thus, some messages are sent to the user which may be
ambiguous (depending on the user’s cognitive skills). An example of such messages is
“Parameter/Question has no ParentParameter attribute”. Since a Question cannot have
a ParentParameter attribute, there is no need for it to appear in the message.

www.manaraa.com

Appendix E

“Star” Interface Interpreter:
Requirements Specification of the Star
GUI

The diagram(s) illustrating each section of this document will be found in Chapter 4 of this
thesis.

E.1 The Main Panel

The Main Panel is displayed when the application is started, and remains visible throughout
the lifetime of the application.

(1) At the top is the Menu Bar. This shows one menu for each command group in the
application, and one menu named “Star” (for services provided by the Star interpreter
for all Johar applications). We refer to the non-Star menus as “application menus”.

(2) Each application menu is labelled in the Menu Bar by the name of the command group.

(3) The menu items in each application menu are the commands that are in that command
group.

(4) An application menu item is clickable (not greyed out) if the corresponding command is
active.

(5) A command is active at a given point if either it has no ActiveIfMethod, or it has an
ActiveIfMethod and that method returns true.

(6) On the left is the Text Display Area. This shows all text messages sent by the application
engine using showText that are not displayed through some other means.

124

www.manaraa.com

E.2. The Command Dialog Box 125

(7) On the right is the Table Area. This is a tabbed pane.

(8) In the Table Area, there is one tab corresponding to every revealed Table currently in the
application.

(9) The application decides which Tables to conceal and reveal.

(10) If, during the processing of a command, the application engine sets the top table, then
immediately after the command has finished processing, the topmost table in the Table
Area is the last table to have been set as the top table.

(11) If, during the processing of a command, the application engine does not set the top table,
then immediately after the command has finished processing, the topmost table in the
Table Area remains unchanged from the time that the command was issued.

(12) Notwithstanding the table set as the topmost table by the app engine, the user can
(between issuing one command and issuing the next command) click on a table tab in
order to move that table to the top.

(13) At the bottom is the Status Bar. This shows low-prominence messages sent by the
application engine using showText.

(14) On the Star menu, there is one menu item, “Help”.

(15) When the “Help” menu item is selected, the Help Box is displayed (see below).

E.2 The Command Dialog Box

(1) At the top is the Label attribute of the command.

(2) Under that is one section for every queryable parameter (see below) in the current stage.

(3) Many commands have only one stage. However, if there is more than one stage, only the
queryable parameters in the current stage will appear in the parameter section.

(4) There is one section of the box for each queryable parameter in the current stage.

(5) At the bottom are two to four buttons: Cancel, Previous, Next, and OK. Cancel and
OK always appear; Previous and Next do not always appear.

(6) The Cancel button always appears and is always enabled.

www.manaraa.com

126Chapter E. “Star” Interface Interpreter: Requirements Specification of the Star GUI

(7) The Cancel button is on the left-hand side of the dialog box.

(8) The Previous button:

(i) Appears if there is more than one queryable stage (see below).

(ii) Is enabled if the current stage is not the first queryable stage.

(9) The Next button:

(i) Appears if there is more than one queryable stage.

(ii) Is enabled if the current stage is not the last queryable stage.

(10) The OK button:

(i) Always appears.

(ii) Is enabled if there are no incomplete stages (see below).

(11) The OK button is on the right-hand side of the dialog box.

(12) A parameter is inactive if both (a) it has a ParentParameter, and (b) the current value
of the ParentParameter is not the ParentValue for this parameter.

(13) A queryable parameter is any parameter that is not a tableEntry parameter with a
browsable SourceTable.

(14) A queryable stage is a stage that contains some queryable parameter.

(15) An incomplete stage is a stage that contains some parameter such that: (a) the parameter
is not inactive, (b) there is no DefaultValue or DefaultValueMethod for the
parameter, and (c) the current number of repetitions for which the user has selected a
value is less than the MinNumberOfReps for the parameter.

(That is, any repetitions that the user has not filled in and that do not have a default value
should be interpreted as repetitions that the user does not want to give to the application
engine. If the number of the remaining repetitions is less than the MinNumberOfReps,
then the user still needs to fill in more values.)

E.3 Parameter Section of the Command Dialog Box

Every queryable parameter in the current stage is represented by a section of the command
dialog box.

www.manaraa.com

E.4. Repetition Section of the Parameter Section 127

(1) On the left is the Label attribute of the parameter, at the top of the left-hand side,
followed by a colon.

(2) On the right is one subsection for each repetition of the parameter, and sometimes a small
Add Another button.

(3) Initially (before any user interaction), the number of repetition sections will be equal to
maximum(1, m), where m is the value of MinNumberOfReps for the parameter.

(4) The Add Another button:

(i) Has the ToolTip “Add another”.

(ii) Is a small button with a plus sign (“+”) in it.

(iii) Appears only if MinNumberOfReps is not equal to MaxNumberOfReps for this
parameter.

(iv) Is enabled only if the current number of repetitions of the parameter is less than
MaxNumberOfReps for this parameter.

(v) Is on the left-hand side of the right-hand half of the parameter section.

(5) The entire section corresponding to the parameter is greyed out if the parameter is
inactive.

E.4 Repetition Section of the Parameter Section

Every repetition of a queryable parameter in the current stage is represented by a section of the
command dialog box.

(1) On the left is a widget which the user can use to select the value of the repetition. This
widget will be different for different types of parameters. For instance, for a boolean
parameter, it may be a widget consisting of two radio buttons labelled “Yes” and “No”,
whereas for a text parameter it may be a text area.

(2) On the right of the section is zero to three small buttons with icons in them.

(3) The Move Up button:

(i) Is a small button with an up-arrow in it.

(ii) Has the ToolTip “Move up”.

www.manaraa.com

128Chapter E. “Star” Interface Interpreter: Requirements Specification of the Star GUI

(iii) Appears only if MaxNumberOfReps is not equal to 1 for this parameter, and
RepsModel for this parameter is sequence.

(iv) Is enabled only if this is not the first repetition (the topmost repetition).

(4) The Move Down button:

(i) Is a small button with an down-arrow in it.

(ii) Has the ToolTip “Move down”.

(iii) Appears only if MaxNumberOfReps is not equal to 1 for this parameter, and
RepsModel for this parameter is sequence.

(iv) Is enabled only if this is not the last repetition (the bottommost repetition).

(5) The Delete button:

(i) Is a small button with an X (“x”) in it.

(ii) Has the ToolTip “Delete”.

(iii) Appears only if MinNumberOfReps is not equal to MaxNumberOfReps for this
parameter.

(iv) Is enabled only if the current number of repetitions of the parameter is more than
maximum(1, m), where m is the value of MinNumberOfReps for this parameter.

E.5 Question Dialog Box

The Question Dialog Box is used to ask Questions.

(1) On the top is the Label attribute of the question.

(2) Below that is a parameter occurrence selection widget, such as would appear in the
Command Dialog Box for one repetition of a parameter.

(3) On the lower left is a Cancel button.

(4) On the lower right is an OK button.

www.manaraa.com

E.6. Help Box 129

E.6 Help Box

The Help Box has three states: the Top-Level state, the Command state, and the
Parameter/Question state. It may be wise to put the contents of the window into a JScrollPane,
since the size of the contents will sometimes depend on the size of the MultiLineHelp
attributes of given commands and parameters.

E.6.1 Top-Level State

The Help Box begins in the Top-Level state.

(1) At the top is the word Commands.

(2) Below that is a table (perhaps a JTable) with one row for every command in the
application. The table has two columns.

(3) Each row of the table contains the Label attribute of the command in the first column.
This should be displayed in a way that makes it clear that it is “clickable”.

(4) Each row of the table contains, in the second column, the OneLineHelp attribute of the
command.

(5) At the bottom right is a button labelled OK. If the user clicks this, the box should be
disposed.

E.6.2 Command State

If a user selects a command label when the help box is in the Top-Level state, it moves to the
Command state.

(1) At the top is the Label attribute of the CommandGroup that the command is in, an arrow,
and the Label attribute of the command. (This gives an indication of where to find the
command on the menus.)

(2) Below that is a section containing the MultiLineHelp attribute of the command.

(3) Below that is a table (perhaps a JTable) with one row for each parameter in the command.
This parameter table has two columns.

(4) Each row of the parameter table contains the Label attribute of the parameter in the first
column. This should be displayed in a way that makes it clear that it is “clickable”.

www.manaraa.com

130Chapter E. “Star” Interface Interpreter: Requirements Specification of the Star GUI

(5) Each row of the parameter table contains, in the second column, the OneLineHelp
attribute of the parameter.

(6) If there are any questions in the command, then below the parameter table, there is a
JLabel reading “Questions that might be asked:”, and a table with one row for each
question in the command. This question table also has two columns.

(7) Each row of the question table contains the Label attribute of the question in the first
column. This should be displayed in a way that makes it clear that it is “clickable”.

(8) Each row of the question table contains, in the second column, the OneLineHelp
attribute of the question.

(9) At the bottom left is a button labelled Back. If the user clicks this, the box should go
back to the Top-Level state.

(10) At the bottom right is a button labelled OK. If the user clicks this, the box should be
disposed.

E.6.3 Parameter/Question State

If a user selects a parameter or question label when the help box is in the Command state, it
moves to the Parameter/Question state.

(1) At the top is the Label attribute of the CommandGroup that the command is in, an arrow,
and the Label attribute of the command. (This provides continuity with the Command
state.)

(2) Below that is a section containing the text “Parameter:”, followed by the Label attribute
of the parameter.

(3) Below that is a section containing the MultiLineHelp attribute of the parameter.

(4) At the bottom left is a button labelled Back. If the user clicks this, the box should go
back to the Command state with the selected command.

(5) At the bottom right is a button labelled OK. If the user clicks this, the box should be
disposed.

(6) For a Question, the Help Box is identical, except that the text “Parameter:” reads
“Question:” instead.

www.manaraa.com

Appendix F

“Star” Interface Interpreter:
Requirements Specification (Behaviour)

F.1 Top-Level Behaviour

(1) Read the IDF.

(2) Create the Main Panel.

(i) Every CommandGroup should correspond to a menu on the menu bar.

(ii) There should also be the menu “Star”, as the rightmost menu on the menu bar.

(iii) The menu item for a command should be the Label of the command, followed by
“...” if selecting the command will result in a Command Dialog being created
(see below).

(3) Initialize the Text Area to empty.

(4) Create the GemSetting and validate it.

(5) Call the application engine’s initialization method.

(6) Refresh the tables (see below).

(7) Append a horizontal line (this could be just a line of minus characters) to the bottom of
the Text Area. (This will separate any initial message from the application engine from
the messages that are responses to the commands.)

(8) Call the ActiveIfMethodmethod of every command, and make each menu item of each
menu active or inactive (greyed out) according to the result of the ActiveIfMethod
method of the command.

131

www.manaraa.com

132 Chapter F. “Star” Interface Interpreter: Requirements Specification (Behaviour)

F.2 Selecting a Command from a Menu

When the user selects a command from a menu:

(1) Set a String field lastDisplayedText to the empty string. (Rationale: this will be for
displaying the last text that the program shows the user. See below.)

(2) If any table selection is incomplete (see below) for the command, then pop up a dialog
box with an “OK” button telling the user which tables they have to select rows in in order
to issue the command, and a description of the bounds of the number of rows to select
(e.g., “at least 2”, “between 1 and 5”).

(3) Otherwise, if no stage in the command has a queryable parameter (i.e., there are no
parameters to any of the stages of the command, or all parameters in all stages of the
command are tableEntry parameters that are not queryable):

(i) Call gemSetting.selectCurrentCommand(cmdName).

(ii) Call gemSetting.selectCurrentStage(0).

(iii) For each stage i in the command, perform the Stage Loop from the IntI
Specification document.

(iv) Perform the Question-and-Wrapup Procedure with parameters 0 and true. (This
indicates that the Question-and-Wrapup Procedure should start with question
number 0, and should wrap up the command if any questions are cancelled.)

(4) Otherwise (i.e., if no table selection is incomplete for the command, but there are
queryable parameters):

(i) Call gemSetting.selectCurrentCommand(cmdName).

(ii) Create the Command Dialog for the command. (The Command Dialog will take
over the rest of the processing of the command.)

A table selection is incomplete for a given command if it contains at least one stage with a
parameter with the following characteristics:

(1) The parameter is of type tableEntry;

(2) The SourceTable of the parameter is Browsable;

(3) The parameter does not have a ParentParameter; and

(4) The MinNumberOfReps for the parameter is greater than the number of rows that are
currently selected in the SourceTable of the parameter.

www.manaraa.com

F.3. Question-and-Wrapup Procedure 133

F.3 Question-and-Wrapup Procedure

The Question-and-Wrapup Procedure takes two parameters: the number of the question (int
questionNumber), and an indication of whether the command should be wrapped up if a
question is cancelled (boolean wrapUpIfCancelled).

(1) If questionNumber is greater than or equal to the number of questions in the command,
then this indicates that everything is OK for the command to be actually executed.

(i) Call the command’s CommandMethod.

(ii) Execute the Command Wrapup Procedure (see below) with parameter false
(indicating command was not cancelled).

(iii) Return.

Otherwise, continue with the below steps.

(2) Call the AskIfMethod for the question.

(3) If the AskIfMethod returns false, then:

(i) Execute the Question-and-Wrapup Procedure (recursively), using
questionNumber + 1 and wrapUpIfCancelled as parameters.

(ii) Return.

Otherwise, continue with the below steps.

(4) If the question has a DefaultValue, set the value of (the response to) the question to
the default value.

(5) Otherwise, if the question has a DefaultValueMethod, then call it and set the value of
(the response to) the question to the default value.

(6) Create a question dialog box for the question.

F.3.1 Question Dialog Cancel Button Action

If the user presses the Cancel button on the Question Dialog Box:

• Dispose of the question dialog box.

• If wrapUpIfCancelled, then execute the Command Wrapup Procedure with parameter
true, indicating the command was cancelled.

www.manaraa.com

134 Chapter F. “Star” Interface Interpreter: Requirements Specification (Behaviour)

F.3.2 Question Dialog OK Button Action

If the user presses the OK button on the Question Dialog Box:

(1) Validate the current value of (the response to) the question as if it is a parameter, as
indicated in requirements 26-51 of the IntI specification. (A question with no default
value, for which the user has not selected a value, should be interpreted as an invalid
response.)

(2) If the value of (the response to) the question does not pass validation:

(i) Present an error message to the user in a dialog box. The error dialog box should
have just an “OK” button.

(ii) When the user presses OK, dispose of the error dialog box. (Rationale: This will
have the effect of returning control to the question dialog box, so that the user can
select another value and press OK again or Cancel.)

(3) Otherwise:

(i) Load the current value of (the response to) the question into the Gem.

(ii) Dispose of the question dialog box.

(iii) Execute the Question-and-Wrapup Procedure (recursively), using
questionNumber + 1 and wrapUpIfCancelled as parameters.

F.4 Command Wrapup Procedure

The Command Wrapup Procedure is called after the user selects a command from the menu
and some processing has been done. It takes one boolean parameter, called
commandWasCancelled. commandWasCancelled should be false only if the application
engine method was called before the command wrapup procedure was called. If it is true,
this means that the command was cancelled in some way by the user or by Star itself.

(1) If there is a Command Dialog, dispose of it.

(2) If commandWasCancelled is false:

(i) Determine whether the application should quit, by checking the QuitAfter
attribute and/or calling the QuitAfterIfMethod of the command.

(ii) If the application should quit:

www.manaraa.com

F.5. Refreshing the Tables 135

(a) If lastDisplayedText is non-null and not the empty string, then create a
dialog box containing lastDisplayedText and an “OK” button, and display
it. Wait for the user to click “OK”, and then delete the dialog box. (Rationale:
if the command executed a showText method and then Star exits, it may exit
before the user has had time to read the text.)

(b) Exit the application, e.g. using System.exit(0).

(iii) Otherwise:

(a) Append a horizontal line to the Text Display Area, in order to separate the last
command’s output from the output of any future commands.

(b) Refresh the tables (see below).

(3) Call the ActiveIfMethod of every command, and make each menu item of each menu
active or inactive (greyed out) according to the result of the ActiveIfMethod of the
command.

F.5 Refreshing the Tables

To refresh the tables:

(1) For each browsable table currently being displayed in the Table Area that is now hidden,
delete the corresponding tab.

(2) For each browsable table not currently being displayed in the Table Area that is now
non-hidden, create a tab in the Table Area. (After this happens, it should be the case that
the only tables with tabs in the Table Area are non-hidden tables.)

(3) For each non-hidden table which has been updated since the last command execution
terminated, update the data on the tab to reflect the contents of the table.

(4) If there is a top table now, then place that table’s tab on top in the tab pane.

F.6 The ShowTextHandler

The ShowTextHandler for Star handles text according to the prominence of the text.

(1) 0-1999: For each line of text in the message:

www.manaraa.com

136 Chapter F. “Star” Interface Interpreter: Requirements Specification (Behaviour)

(i) Truncate the line of text, if necessary, to fit in the Status Bar. (Rationale: it should
fit all right, but just in case it doesn’t, we can show part of it. Because it is low-
prominence, it seems OK to just show part of it.)

(ii) Set the Status Bar to the text.

[Note: This will cause the last line of the most recent message to overwrite anything that
was in the Status Bar before. This is OK because these messages are “low prominence”.]

(2) 2000-2999: Append the text to the text being displayed in the Text Display Area. Append
the text also to lastDisplayedText.

(3) 3000 and higher: Create a dialog box containing the text and an “OK” button, and display
it. When the user clicks the “OK” button, the box should be deleted.

F.7 The Command Dialog Box

F.7.1 Creating the Command Dialog Box

(1) Call gemSetting.selectCurrentStage(0).

(2) Perform an Initialize Stage procedure.

(3) While the current stage has no queryable parameters, perform a Next Stage procedure
(see below).

(4) Update the dialog box to reflect the current stage, as described in the Star GUI
Specification document.

F.7.2 Initialize Stage Procedure

(1) If the current stage is a stage that has never been initialized so far, then for each parameter
in the current stage:

(i) If the parameter has a DefaultValue, set the value of the parameter to the default
value.

(ii) Otherwise, if the parameter has a DefaultValueMethod, then call it and set the
value of the parameter to the default value.

www.manaraa.com

F.7. The Command Dialog Box 137

F.7.3 Next Stage Procedure

(1) Perform a Wrap Up Stage procedure.

(2) If the Wrap Up Stage procedure returns true, then (assuming that the current stage is in
the variable currentStage):

(i) Set the current stage to currentStage+1.

(ii) Call gemSetting.selectCurrentStage(currentStage).

(iii) Perform an Initialize Stage procedure (see above).

F.7.4 Previous Stage Procedure

(1) Perform a Wrap Up Stage procedure.

(2) If the Wrap Up Stage procedure returns true, then (assuming that the current stage is in
the variable currentStage):

(i) Set the current stage to currentStage-1.

(ii) Call gemSetting.selectCurrentStage(currentStage).

(iii) Perform an Initialize Stage procedure (see above).

F.7.5 Wrap Up Stage Procedure

This procedure takes no parameters. It returns true if all the tasks that the user had to do in
the current stage have been completed, and it returns false otherwise.

(1) Validate the current values of the current repetitions of the parameters, as indicated in
requirements 26-51 of the IntI specification. (A parameter with no default value, for
which the user has not selected a value, should be interpreted as not adding a valid
repetition of the parameter.)

(2) If any parameter or parameter repetition does not pass validation, then:

(i) Collect information in a string about anything that does not pass validation.

(ii) Present that information to the user in a dialog box. The dialog box should have
just an “OK” button.

(iii) When the user clicks OK:

www.manaraa.com

138 Chapter F. “Star” Interface Interpreter: Requirements Specification (Behaviour)

(a) If the current stage has no queryable parameters, then perform the Command
Wrapup procedure, with the parameter true. (Rationale: This might happen
in some obscure situations, such as when a tableEntry parameter has a
parent parameter which gets set to the parent value. In these situations, there
is nothing we can do but cancel the command. The true parameter to the
Command Wrapup procedure indicates it has been cancelled.)

(iv) Return false. (Rationale: the user has not completed everything they have to do
for this stage.)

(3) (Otherwise:) Load the current values of the current repetitions of the parameters for the
current stage into the Gem.

(4) Call the ParameterCheckMethod of the current stage, if it has one.

(5) If the ParameterCheckMethod exists and returns a non-null, non-empty string:

(i) Show the user the string in a popup with an “OK” button.

(ii) When the user clicks OK:

(a) If the current stage has no queryable parameters, then perform the Command
Wrapup procedure, with the parameter true.

(iii) Return false.

(6) Otherwise, return true.

F.7.6 Next Button Action

When the user presses the Next button (if it is not greyed out):

(1) Perform a Next Stage procedure (see above).

(2) While the current stage has no queryable parameters, perform a Next Stage procedure
(see above).

(3) Update the dialog box to reflect the current stage, as described in the Star GUI
Specification document.

www.manaraa.com

F.7. The Command Dialog Box 139

F.7.7 Previous Button Action

When the user presses the Previous button (if it exists and is not greyed out):

(1) Perform a Previous Stage procedure (see above).

(2) While the current stage has no queryable parameters, perform a Previous Stage procedure
(see above).

(3) Update the dialog box to reflect the current stage, as described in the Star GUI
Specification document.

F.7.8 OK Button Action

When the user presses the OK button (if it exists and is not greyed out):

(1) Perform the Wrap Up Stage procedure.

(2) If the Wrap Up Stage procedure returns false, then return.

(3) For each stage i in the current command, from stage 0 to the last stage:

(i) Call gemSetting.selectCurrentStage(i).

(ii) Perform the Initialize Stage procedure.

(iii) Perform the Wrap Up Stage procedure.

(iv) If the Wrap Up Stage procedure returns false, then return.

(Rationale: there may have been some previous stages which have become invalid as a
result of the current stage; also, there may be stages after the current stage with
parameters whose values have not been loaded yet.)

(4) Perform the Question-and-Wrapup Procedure with parameters 0 and false.

F.7.9 Cancel Button Action

When the user presses the Cancel button:

(1) Perform the Command Wrapup procedure, with the parameter true.

www.manaraa.com

140 Chapter F. “Star” Interface Interpreter: Requirements Specification (Behaviour)

F.8 The Parameter Section

F.8.1 Add Another Button Action

When the user clicks the Add Another button:

• Add another repetition section to the parameter section for the parameter, at the bottom
of the list. You may need to add a repetition to the model as well. (Rationale: This is
safe because if the Add Another button exists and is not greyed out, then we are not at
the maximum number of repetitions for the parameter yet.)

F.8.2 Move Up Button Action

When the user clicks the Move Up button for repetition k:

• Exchange the value in repetition k with the value in repetition k− 1. This should be done
in the model so that the changes will be automatically reflected in the GUI. (Rationale:
If the Move Up button exists and is not greyed out, then there is another repetition above
the kth repetition.)

F.8.3 Move Down Button Action

When the user clicks the Move Down button for repetition k:

• Exchange the value in repetition k with the value in repetition k + 1. This should be done
in the model so that the changes will be automatically reflected in the GUI. (Rationale:
If the Move Down button exists and is not greyed out, then there is another repetition
below the kth repetition.)

F.8.4 Delete Button Action

When the user clicks the Delete button for repetition k:

• Delete repetition k. This should be done in the model as well. (Rationale: If the Delete
button exists and is not greyed out, then we are not at the minimum number of repetitions
for the parameter yet.)

www.manaraa.com

Appendix G

Some Source Code of “Star”
Implementation

G.1 The Star class
This is the class that launches the Star interface interpreter.

package johar.interfaceinterpreter.star;

import johar.idf.*;

import johar.utilities.TextInputValidator;

import johar.gem.*;

/**

* The Star Interface Interpreter’s main class.

*/

public class Star implements ShowTextHandler {

private Idf idf;

private GemSetting gem;

private StarWindow starFrame;

private String starTitle;

private CommandMenu cmdMenu;

private CommandMenuItem cmdMenuItem;

private StatusBar statusBar;

private TextDisplayArea textArea;

private ScrollingWidget scrollWidget;

private CommandController cc;

private TableArea tableArea;

/**

141

www.manaraa.com

142 Chapter G. Some Source Code of “Star” Implementation

* Star Constructor: implements the top-level behaviour

* specification.

* @param idfName

* Name of the IDF

*/

public Star(String idfName) {

try {

idf = Idf.idfFromFile(idfName); //Read the IDF

//Check the IDF version

if (!idf.getIdfVersion().equals("1.0")){

showText("The specified IDF Version is not " +

"supported. The only IDF version allowed "

+ "is 1.0.", 3000);

System.exit(1);

}

//Create the GemSetting and validate it

gem = GemFactory.newGemSetting(idf, this);

gem.validate();

//Create the Command Controller

cc = new CommandController(gem, idf, this);

createStarGUI(); //Create the Main Panel and

//the Text Display Area

//Call the application engine’s initialization

//method and refresh the tables

gem.initializeAppEngine();

createTableArea(); //Creates the Table Area

//and refreshes the tables.

//Append a horizontal line to the bottom of

//the Text Area.

starFrame.appendHorizontalLineToTextArea();

} catch (IdfFormatException ex) {

//Show message to user

showText(ex.getMessage(), 3000);

} catch (Exception e) {

MessageDialog.showError("An error occurred " +

"while launching" + " the application." +

" [Error Details: " + e.getMessage()

+ "]");

}

www.manaraa.com

G.1. The Star class 143

}

/*

* Create the Menus and Call the ActiveIfMethod method

* of every command, and make each menu item of each

* menu active or inactive (greyed out) according to

* the result of the ActiveIfMethodmethod of the

* command.

*/

private void createMenus() {

/* The IdfAnalyzer provides access to various

* information about the specified IDF e.g.

* list of queryable/non-queryable params

* in a command/stage, list of questions in a

* command, list of tables, list of browsable

* tables, etc. */

IdfAnalyzer idfAnalyzer = new IdfAnalyzer(idf);

IdfCommandGroup cmdGroup;

IdfCommand cmd;

int numOfCmdGrps = idf.getNumCommandGroups();

int numOfCmds = idf.getNumCommands();

int numOfMembers = 0;

boolean isActive;

for (int i = 0; i < numOfCmdGrps; i++) {

cmdGroup = idf.getCommandGroupNumber(i);

cmdMenu = new CommandMenu(cmdGroup.getCommandGroupName(),

cmdGroup.getLabel());

starFrame.addMenu(cmdMenu);

numOfMembers = cmdGroup.getNumMembers();

for (int j = 0; j < numOfMembers; j++) {

for (int k = 0; k < numOfCmds; k++) {

cmd = idf.getCommandNumber(k);

isActive = gem.methodIsActive(cmd.getCommandName());

if (cmdGroup.getMemberNumber(j)

.equals(cmd.getCommandName())) {

cmdMenuItem = new CommandMenuItem(cmd.getCommandName(),

cc, false);

idfAnalyzer.setCurrentCommand(cmd.getCommandName());

if (idfAnalyzer.hasQueryableParams())

cmdMenuItem.setText(cmd.getLabel() + "...");

else

www.manaraa.com

144 Chapter G. Some Source Code of “Star” Implementation

cmdMenuItem.setText(cmd.getLabel());

cmdMenuItem.setEnabled(isActive);

starFrame.addMenuItem(cmdMenuItem,

cmdGroup.getCommandGroupName());

break;

}

}

}

}

// Add the Star menu

cmdMenu = new CommandMenu("star", "Star");

starFrame.addMenu(cmdMenu);

// Add the Help menu item to Star

cmdMenuItem = new CommandMenuItem("help", cc, true);

cmdMenuItem.setText("Help");

cmdMenuItem.setEnabled(true);

starFrame.addMenuItem(cmdMenuItem, "star");

}

// Create the Status bar

private void createStatusBar() {

statusBar = new StatusBar();

starFrame.setStatusBar(statusBar);

}

// Create the Text Display Area

private void createTextDisplayArea() {

textArea = new TextDisplayArea();

scrollWidget = new ScrollingWidget(textArea);

scrollWidget.setName("textDisplayArea");

starFrame.setTextArea(scrollWidget);

}

// Create the Table Area

private void createTableArea() {

tableArea = new TableArea(idf, gem, cc);

tableArea.setName("tableDisplayArea");

starFrame.setTableArea(tableArea);

}

// Set the title of the Star GUI

private void setStarTitle() {

www.manaraa.com

G.1. The Star class 145

starTitle = idf.getApplication();

starFrame.setTitle(TextInputValidator

.titleCaseTranslation(starTitle));

}

// Create the Star GUI

private void createStarGUI() {

starFrame = new StarWindow();

createMenus();

createTextDisplayArea();

createStatusBar();

setStarTitle();

}

/**

* Show the Star GUI

*/

public void show() {

if (starFrame != null)

starFrame.setVisible(true);

}

/**

* Get a Star Window (or Star Frame) instance

*

* @return Star Window instance

*/

public StarWindow getStarFrame() {

return starFrame;

}

/**

* Implements the showText method of the ShowTextHandler interface

*/

public void showText(String text, int priorityLevel) {

if (priorityLevel >= HIGHPRIO_LEVEL) {

MessageDialog.show(text);

} else if (priorityLevel >= RESULT_LEVEL) {

textArea.setContent(text);

cc.lastDisplayedText += text;

} else if (priorityLevel >= STATUS_LEVEL) {

starFrame.setStatusMessage(text);

} else if (priorityLevel >= DEBUG_LEVEL) {

System.out.println(text);

} else {

www.manaraa.com

146 Chapter G. Some Source Code of “Star” Implementation

System.out.println("Priority Level in

Show Text Handler is not valid.");

}

}

/**

* The main method.

*

* @param args

* Command-Line arguments

*/

public static void main(String args[]) {

Star star = new Star(args[0]);

star.show();

}

}

G.2 The CommandDialog class
This class creates the Command Dialog Box.

package johar.interfaceinterpreter.star;

import java.awt.Component;

import java.awt.Container;

import java.awt.Toolkit;

import java.util.TreeMap;

import java.awt.Dialog;

import java.awt.event.WindowEvent;

import java.awt.event.WindowListener;

import javax.swing.JDialog;

import javax.swing.Box;

import javax.swing.BoxLayout;

import javax.swing.JComponent;

import javax.swing.JPanel;

import javax.swing.border.EmptyBorder;

import johar.gem.GemSetting;

import johar.idf.Idf;

import johar.idf.IdfCommand;

import johar.idf.IdfParameter;

www.manaraa.com

G.2. The CommandDialog class 147

/**

* The Command Dialog Box’s creator.

*

*/

public class CommandDialog extends JDialog implements WindowListener {

private Idf _idf;

private GemSetting _gem;

private CommandController _cc;

private IdfCommand _currentCommand;

private Container container;

private TreeMap<Integer, StageWidget> stageWidgetMap;

private StageWidget stageWidget;

private JPanel buttonsPanel;

private int _currentStage;

private IdfAnalyzer idfAnalyzer;

private int numOfQueryableStages;

/**

* The CommandDialog constructor

*

* @param cc

* the Command Controller

* @param gem

* the GemSetting

* @param idf

* the IDF

* @param currentCommand

* the current IdfCommand

*/

public CommandDialog(CommandController cc, GemSetting gem, Idf idf,

IdfCommand currentCommand) {

_idf = idf;

_cc = cc;

_currentCommand = currentCommand;

_gem = gem;

currentCommand.getNumStages();

stageWidgetMap = new TreeMap<Integer, StageWidget>();

idfAnalyzer = new IdfAnalyzer(_idf);

numOfQueryableStages = idfAnalyzer

.getNumOfQueryableStages(currentCommand);

initialize();

}

// Initializes the Command Dialog

www.manaraa.com

148 Chapter G. Some Source Code of “Star” Implementation

private void initialize() {

container = getContentPane();

container.setLayout(new BoxLayout(container, BoxLayout.Y_AXIS));

setModalityType(Dialog.ModalityType.APPLICATION_MODAL);

setDefaultCloseOperation(JDialog.DISPOSE_ON_CLOSE);

setLocation(300, 30);

setResizable(false);

setTitle(_currentCommand.getLabel());

setName(_currentCommand.getCommandName());

addWindowListener(this);

}

/**

* Initializes the specified stage’s widget

*

* @param stageNumber

* the stage number

*/

public void initializeStageWidget(int stageNumber) {

try {

_currentStage = stageNumber;

// Perform if the current stage has never been initialized so far

if (!stageWidgetMap.containsKey(stageNumber)) {

stageWidget = new StageWidget(_cc, _gem, _idf, _currentCommand,

stageNumber);

stageWidget.setBorder(new EmptyBorder(10, 10, 10, 10));

container.add(stageWidget);

stageWidgetMap.put(stageNumber, stageWidget);

}

} catch (Exception e) {

MessageDialog

.showError("An error occurred while performing the requested

operation. [Error Details: "

+ e.getMessage() + "]");

}

}

/**

* Updates the Command Dialog to reflect changes

*/

public void revalidate() {

www.manaraa.com

G.2. The CommandDialog class 149

if (stageWidgetMap.size() > 0) {

for (int stageNumber : stageWidgetMap.keySet()) {

if (stageNumber == _currentStage) {

// Make the current stage visible

stageWidgetMap.get(stageNumber).setVisible(true);

} else

stageWidgetMap.get(stageNumber).setVisible(false);

/*

* Disable all inactive parameters in current stage and enable

* the active ones

*/

deactivateParams(stageNumber);

}

}

validateWindow();

repaint();

pack();

if (getX() != 300 && getY() != 30)

setLocation(300, 30);

}

private void validateWindow() {

addButtons(); // Add the Cancel, Previous, Next, and OK buttons

// Disables/enables buttons based on the number of queryable

//stages

if (idfAnalyzer.getNumOfQueryableStagesBefore(_currentCommand,

_currentStage) > 0

&& idfAnalyzer.getNumOfQueryableStagesAfter(_currentCommand,

_currentStage) > 0) {

setPreviousButtonEnabled(true);

setNextButtonEnabled(true);

} else {

if (idfAnalyzer.getNumOfQueryableStagesBefore(_currentCommand,

_currentStage) == 0

&& idfAnalyzer.getNumOfQueryableStagesAfter(

_currentCommand, _currentStage) == 0) {

setPreviousButtonEnabled(false);

setNextButtonEnabled(false);

} else if (idfAnalyzer.getNumOfQueryableStagesBefore(

_currentCommand, _currentStage) == 0) {

www.manaraa.com

150 Chapter G. Some Source Code of “Star” Implementation

setPreviousButtonEnabled(false);

setNextButtonEnabled(true);

} else if (idfAnalyzer.getNumOfQueryableStagesAfter(

_currentCommand, _currentStage) == 0) {

setPreviousButtonEnabled(true);

setNextButtonEnabled(false);

}

}

}

/**

* Get the GUI of the specified stage

*

* @param stageNumber

* stage number

* @return the stage GUI

*/

public StageWidget getStageWidget(int stageNumber) {

if (stageWidgetMap.containsKey(stageNumber)) {

return stageWidgetMap.get(stageNumber);

} else

return null;

}

/**

* Get the number of Stages that have been initialized so far

*

* @return the number of initialized stages

*/

public int getStageCount() {

return stageWidgetMap.size();

}

// Makes parameter widgets active or inactive

private boolean deactivateParams(int stageNumber) {

boolean isDeactivated = false;

if (stageWidgetMap.containsKey(stageNumber)) {

JComponent stageComp = getStageWidget(stageNumber);

for (Component c : stageComp.getComponents()) {

if (c instanceof ParameterWidget) {

if (isParamActive(c.getName(), stageNumber))

setEnabledComponents(c, true);

else {

www.manaraa.com

G.2. The CommandDialog class 151

setEnabledComponents(c, false);

isDeactivated = true;

}

}

}

}

return isDeactivated;

}

// Enable or disable components

private void setEnabledComponents(Component comp, boolean enable) {

JComponent paramWidget = (JComponent) comp;

ParameterWidget pWidget = (ParameterWidget) paramWidget;

IdfParameter paramObj = pWidget.getParamObject();

int repNumber = -1;

for (Component c : paramWidget.getComponents()) {

try {

if (!(c instanceof MoveUpButton || c instanceof MoveDownButton

|| c instanceof DeleteButton))

c.setEnabled(enable);

else {

if (!enable)

c.setEnabled(enable);

else {

repNumber = -1;

if (c instanceof MoveUpButton) {

repNumber = ((MoveUpButton) c).getRepNumber();

if (repNumber == 0)

c.setEnabled(false);

else

c.setEnabled(true);

} else if (c instanceof MoveDownButton) {

repNumber = ((MoveDownButton) c).getRepNumber();

if (repNumber == pWidget.getFieldsCount() - 1)

c.setEnabled(false);

else

c.setEnabled(true);

} else if (c instanceof DeleteButton) {

if (paramObj.getMinNumberOfReps() == pWidget

.getFieldsCount())

c.setEnabled(false);

else

c.setEnabled(true);

www.manaraa.com

152 Chapter G. Some Source Code of “Star” Implementation

}

}

}

} catch (Exception e) {

}

}

}

// Adds buttons to the Command Dialog

private void addButtons() {

deleteButtonPanel();

buttonsPanel = new JPanel();

buttonsPanel

.setLayout(new BoxLayout(buttonsPanel, BoxLayout.LINE_AXIS));

buttonsPanel.setBorder(new EmptyBorder(10, 10, 10, 10));

buttonsPanel.setName("buttonsPanel");

CommandCancelButton cancelButton = new CommandCancelButton(_cc);

buttonsPanel.add(cancelButton);

buttonsPanel.add(Box.createHorizontalGlue());

if (numOfQueryableStages > 1) {

PreviousButton prevButton = new PreviousButton(_cc);

prevButton.setText("Previous");

prevButton.setName("PreviousButton");

if (idfAnalyzer.getNumOfQueryableStagesBefore(_currentCommand,

_currentStage) == 0)

prevButton.setEnabled(false);

buttonsPanel.add(prevButton);

NextButton nextButton = new NextButton(_cc);

nextButton.setText("Next");

nextButton.setName("NextButton");

if (idfAnalyzer.getNumOfQueryableStagesAfter(_currentCommand,

_currentStage) == 0)

nextButton.setEnabled(false);

buttonsPanel.add(nextButton);

www.manaraa.com

G.2. The CommandDialog class 153

}

CommandOKButton okButton = new CommandOKButton(_cc);

buttonsPanel.add(okButton);

container.add(buttonsPanel);

}

// Get the index of a button in the buttons panel

private int getButtonIndex(String name) {

return WidgetAnalyzer.getWidgetIndexInDialog(this, name);

}

// Delete the buttons panel

private void deleteButtonPanel() {

int index = WidgetAnalyzer.getWidgetIndexInDialog(this,

"buttonsPanel");

if (index > -1)

container.remove(index);

}

// Enables/Disables the previous button

private void setPreviousButtonEnabled(boolean enable) {

int index = getButtonIndex("PreviousButton");

if (index > -1)

((PreviousButton) container.getComponent(index))

.setEnabled(enable);

}

// Enables/Disables the next button

private void setNextButtonEnabled(boolean enable) {

int index = getButtonIndex("NextButton");

if (index > -1)

((NextButton) container.getComponent(index))

.setEnabled(enable);

}

/**

* Checks if the specified parameter is active.

*

* @param paramName

* name of parameter

www.manaraa.com

154 Chapter G. Some Source Code of “Star” Implementation

* @param stageNumber

* stage number

* @return true or false

*/

public boolean isParamActive(String paramName, int stageNumber) {

idfAnalyzer.setCurrentCommand(_currentCommand.getCommandName());

IdfParameter param = idfAnalyzer

.getIdfParameter(paramName, stageNumber);

// Check if the parameter has a ParentParameter

boolean isActive = false;

if (param.getParentParameter() == null

|| param.getParentParameter().equals("")) {

isActive = true;

} else {

/*

* Since the parameter has a ParentParameter, verify if the

* parameter’s ParentValue is same as the parent parameter’s value

*/

IdfParameter parentParam = idfAnalyzer.getIdfParameter(param

.getParentParameter());

String expectedParentValue = param.getParentValue(); // Expected

// value of

// the

// Parent

// Parameter

String actualParentValue = ""; // Actual value of the Parent

// Parameter

try {

for (int t = 0; t < parentParam.getMaxNumberOfReps(); t++) {

actualParentValue = _gem.getParameter(

parentParam.getParameterName(), t).toString();

if (actualParentValue.equals(expectedParentValue)) {

isActive = true;

break;

}

}

} catch (Exception e) {

isActive = false;

}

// If parent parameter has no value in Gem, then get its default

// value (if any)

www.manaraa.com

G.3. The QuestionDialog class 155

if (actualParentValue == null || actualParentValue.equals("")) {

if (parentParam.getDefaultValueMethod() != null

&& !parentParam.getDefaultValueMethod().equals(""))

actualParentValue = _gem.callDefaultValueMethod(

parentParam.getParameterName()).toString();

else

actualParentValue = parentParam.getDefaultValue();

if (actualParentValue.equals(expectedParentValue))

isActive = true;

}

}

return isActive;

}

public void windowClosed(WindowEvent e) {

dispose();

}

public void windowActivated(WindowEvent e) {

}

public void windowClosing(WindowEvent e) {

}

public void windowDeactivated(WindowEvent e) {

}

public void windowDeiconified(WindowEvent e) {

}

public void windowIconified(WindowEvent e) {

}

public void windowOpened(WindowEvent e) {

}

}

G.3 The QuestionDialog class
This class creates the Question Dialog Box.

www.manaraa.com

156 Chapter G. Some Source Code of “Star” Implementation

package johar.interfaceinterpreter.star;

import java.awt.Container;

import java.awt.FlowLayout;

import java.awt.GridBagConstraints;

import java.awt.GridBagLayout;

import java.awt.Insets;

import java.util.ArrayList;

import java.util.List;

import java.awt.Dialog;

import java.awt.event.WindowEvent;

import java.awt.event.WindowListener;

import javax.swing.JDialog;

import javax.swing.JLabel;

import javax.swing.JPanel;

import johar.idf.Idf;

import johar.idf.IdfQuestion;

/**

* The Question Dialog Box for each question attribute in the IDF.

*

*/

public class QuestionDialog extends JDialog implements WindowListener {

private IdfQuestion _questionObj;

private CommandController _cc;

private JPanel mainPanel;

private Container container;

private GridBagConstraints constraints;

private ParameterWidget paramWidget;

private Object _defaultValue;

private List<ParameterWidget> paramWidgetList;

private IdfAnalyzer idfAnalyzer;

/**

*

* @param defaultValue

* default value of the Question attribute

* @param cc

* the Command Controller object

* @param questionObj

* IdfQuestion object

*/

public QuestionDialog(Object defaultValue, CommandController cc,

Idf idf, IdfQuestion questionObj) {

www.manaraa.com

G.3. The QuestionDialog class 157

_questionObj = questionObj;

_cc = cc;

_defaultValue = defaultValue;

paramWidgetList = new ArrayList<ParameterWidget>();

idfAnalyzer = new IdfAnalyzer(idf); /*

* Provides access to various

* information about the specified

* IDF e.g. list of

* queryable/non-queryable params in

* a command/stage, list of

* questions in a command, list of

* tables, list of browsable tables,

* etc.

*/

}

// Initialize the GUI components

private void initialize() {

mainPanel = new JPanel();

container = getContentPane();

container.setLayout(new FlowLayout(FlowLayout.CENTER, 20, 10));

mainPanel.setLayout(new GridBagLayout());

constraints = new GridBagConstraints();

setModalityType(Dialog.ModalityType.APPLICATION_MODAL);

setDefaultCloseOperation(JDialog.DISPOSE_ON_CLOSE);

setLocation(300, 90);

setResizable(false);

container.add(mainPanel);

addWindowListener(this);

}

/**

* Creates and displays the dialog box.

*/

public void showDialog() {

try {

initialize();

_questionObj.getLabel();

createWidgetQuestion();

addOKCancelButtons();

setTitle("Question");

pack();

www.manaraa.com

158 Chapter G. Some Source Code of “Star” Implementation

setVisible(true);

} catch (Exception e) {

MessageDialog

.showError("An error occurred while performing the requested

operation. [Error Details: "

+ e.getMessage() + "]");

}

}

// Creates the widget for the question

private void createWidgetQuestion() {

constraints.gridx = 0;

constraints.fill = GridBagConstraints.HORIZONTAL;

constraints.insets = new Insets(1, 0, 0, 0);

constraints.gridy = 0;

// Creates a Label for the Question Dialog

JLabel questionLabel = new JLabel();

if (_questionObj.getLabel().length() > 90)

questionLabel.setText("<html><body><p style=’width: 400px’>"

+ _questionObj.getLabel());

else

questionLabel.setText(_questionObj.getLabel());

mainPanel.add(questionLabel, constraints);

// Creates and stores the widgets

String type = _questionObj.getType();

if (type.equals("text"))

addTextField();

else if (type.equals("int") || type.equals("float"))

addNumberField();

else if (type.equals("boolean"))

addBooleanField();

else if (type.equals("choice"))

addChoiceField();

else if (type.equals("timeOfDay"))

addTimeField();

else if (type.equals("date"))

addDateField();

else if (type.equals("file"))

addFileField();

else if (type.equals("tableEntry")

&& !idfAnalyzer.getTable(_questionObj.getSourceTable())

www.manaraa.com

G.3. The QuestionDialog class 159

.getBrowsable())

addTableEntryField();

}

// The position of the question widget

private void initPosition() {

constraints.fill = GridBagConstraints.NONE;

constraints.anchor = GridBagConstraints.CENTER;

constraints.gridy = 1;

constraints.insets = new Insets(5, 0, 0, 0);

}

// Creates widget for question of type "text"

private void addTextField() {

constraints.gridy = 1;

constraints.insets = new Insets(5, 0, 0, 0);

paramWidget = new TextWidget(_defaultValue, _questionObj, _cc);

paramWidgetList.add(paramWidget); // Add to Map

mainPanel.add(paramWidget, constraints);

}

// Creates widget for question of type "int" or "float"

private void addNumberField() {

initPosition();

paramWidget = new NumberWidget(_defaultValue, _questionObj, _cc);

paramWidgetList.add(paramWidget); // Add to Map

mainPanel.add(paramWidget, constraints);

}

// Creates widget for question of type "boolean"

private void addBooleanField() {

initPosition();

paramWidget = new BooleanWidget(_defaultValue, _questionObj, _cc);

paramWidgetList.add(paramWidget); // Add to Map

mainPanel.add(paramWidget, constraints);

}

// Creates widget for question of type "choice"

private void addChoiceField() {

initPosition();

www.manaraa.com

160 Chapter G. Some Source Code of “Star” Implementation

paramWidget = new ChoiceWidget(_defaultValue, _questionObj, _cc);

paramWidgetList.add(paramWidget); // Add to Map

mainPanel.add(paramWidget, constraints);

}

// Creates widget for question of type "timeOfDay"

private void addTimeField() {

initPosition();

paramWidget = new TimeWidget(_defaultValue, _questionObj, _cc);

paramWidgetList.add(paramWidget); // Add to Map

mainPanel.add(paramWidget, constraints);

}

// Creates widget for question of type "date"

private void addDateField() {

initPosition();

paramWidget = new DateWidget(_defaultValue, _questionObj, _cc);

paramWidgetList.add(paramWidget); // Add to Map

mainPanel.add(paramWidget, constraints);

}

// Creates widget for question of type "file"

private void addFileField() {

initPosition();

paramWidget = new FileWidget(_defaultValue, _questionObj, _cc);

paramWidgetList.add(paramWidget); // Add to Map

mainPanel.add(paramWidget, constraints);

}

// Creates widget for question of type "tableEntry",

//whose SourceTable is

// non-browsable

private void addTableEntryField() {

initPosition();

paramWidget = new TableEntryWidget(_defaultValue, _questionObj, _cc);

paramWidgetList.add(paramWidget); // Add to Map

mainPanel.add(paramWidget, constraints);

}

// Creates the buttons

private void addOKCancelButtons() {

www.manaraa.com

G.3. The QuestionDialog class 161

constraints.fill = GridBagConstraints.NONE;

constraints.insets = new Insets(15, 0, 0, 0);

constraints.gridy = 2;

constraints.gridwidth = GridBagConstraints.REMAINDER;

constraints.anchor = GridBagConstraints.WEST;

QuestionCancelButton cancelButton = new QuestionCancelButton(_cc,

_questionObj.getParameterName());

mainPanel.add(cancelButton, constraints);

constraints.anchor = GridBagConstraints.EAST;

constraints.gridy = 2;

QuestionOKButton okButton = new QuestionOKButton(_cc,

_questionObj.getParameterName());

mainPanel.add(okButton, constraints);

}

/**

* Gets the Question Widget

*

* @return the map containing parameter widget

*/

public List<ParameterWidget> getQuestionWidget() {

return paramWidgetList;

}

public void windowClosed(WindowEvent e) {

dispose();

}

public void windowActivated(WindowEvent e) {

}

public void windowClosing(WindowEvent e) {

}

public void windowDeactivated(WindowEvent e) {

}

public void windowDeiconified(WindowEvent e) {

}

public void windowIconified(WindowEvent e) {

}

www.manaraa.com

162 Chapter G. Some Source Code of “Star” Implementation

public void windowOpened(WindowEvent e) {

}

}

G.4 The HelpBox class
This class creates the Help Box.

package johar.interfaceinterpreter.star;

import javax.swing.JSplitPane;

import java.awt.BorderLayout;

import java.awt.Color;

import java.awt.Container;

import java.awt.Dimension;

import java.awt.Font;

import javax.swing.Box;

import javax.swing.BoxLayout;

import javax.swing.JComponent;

import javax.swing.JFrame;

import javax.swing.JLabel;

import javax.swing.JPanel;

import javax.swing.JTextArea;

import javax.swing.SwingConstants;

import javax.swing.border.EmptyBorder;

import johar.idf.Idf;

import johar.idf.IdfCommand;

import johar.idf.IdfParameter;

import johar.idf.IdfQuestion;

/**

* This class creates a Help Box with three states:

* the Top-Level state, the Command state, and the

* Parameter/Question state.

*/

public class HelpBox extends JFrame {

private Container container;

private Idf _idf;

private CommandController _cc;

private IdfAnalyzer idfAnalyzer;

www.manaraa.com

G.4. The HelpBox class 163

private HelpContents contents;

private JTextArea multiLineBox;

private ScrollingWidget multiLineScroll;

private JPanel titlePanel;

private JSplitPane splitter;

/**

* The class’ constructor

*

* @param idf

* the IDF object

* @param cc

* the Command Controller object

*/

public HelpBox(Idf idf, CommandController cc) {

_idf = idf;

_cc = cc;

idfAnalyzer = new IdfAnalyzer(idf); /*

* Provides access to various

* information about the specified

* IDF e.g. list of

* queryable/non-queryable params in

* a command/stage, list of

* questions in a command, list of

* tables, list of browsable tables,

* etc.

*/

contents = new HelpContents(_idf, _cc); // Get the tables

try {

initDialog();

} catch (Exception e) {

MessageDialog

.showError("An error occurred while performing the " +

"requested operation. [Error Details: "

+ e.getMessage() + "]");

}

}

// Creates and shows the Help Box

private void initDialog() {

container = getContentPane();

container.setLayout(new BorderLayout());

setDefaultCloseOperation(JFrame.HIDE_ON_CLOSE);

www.manaraa.com

164 Chapter G. Some Source Code of “Star” Implementation

setLocation(300, 30);

setTitle("Help");

setName("help");

setSize(new Dimension(700, 600));

showTopLevelState();

setVisible(true);

}

// Sets the title of all the three states

private void setTitle(int index, String title) {

int compIndex = getCompIndex("Title" + index);

if (compIndex >= 0) {

JPanel titlePan = (JPanel) container.getComponent(compIndex);

((JLabel) titlePan.getComponent(0)).setText(title);

} else {

titlePanel = new JPanel();

titlePanel.setLayout(new BorderLayout());

JLabel titleLabel = new JLabel(title);

titlePanel.setName("Title" + index);

titlePanel.setBackground(new Color(235, 235, 235));

titlePanel.add(titleLabel, BorderLayout.NORTH);

titleLabel.setHorizontalAlignment(SwingConstants.CENTER);

titleLabel.setFont(new Font(null, Font.BOLD, 13));

container.add(titlePanel, BorderLayout.NORTH);

}

}

// Creates the scrollable text area, and sets its content to the

// MultiLineHelp

private void setMultiLineText(String name, String text,

String textHeader) {

int compIndex = getCompIndex(name);

if (compIndex >= 0) {

JPanel titlePan = (JPanel) container.getComponent(compIndex);

if (WidgetAnalyzer.getWidgetIndex(titlePan, "multiLineBox") == -1)

{

multiLineBox = new JTextArea();

multiLineBox.setText(text);

multiLineBox.setEditable(false);

multiLineBox.setWrapStyleWord(true);

multiLineBox.setLineWrap(true);

multiLineScroll = new ScrollingWidget(multiLineBox);

multiLineScroll.setName("multiLineBox");

if (name.equals("Title1")) {

www.manaraa.com

G.4. The HelpBox class 165

titlePan.setPreferredSize(new Dimension(700, 200));

titlePan.add(multiLineScroll);

} else {

JLabel titleLabel = new JLabel(textHeader);

multiLineScroll.setPreferredSize(new Dimension(700,

getPreferredSize().height - 460));

titlePan.add(titleLabel, BorderLayout.CENTER);

titleLabel.setHorizontalAlignment(SwingConstants.CENTER);

titleLabel.setFont(new Font(null, Font.ITALIC, 13));

titlePan.add(multiLineScroll, BorderLayout.SOUTH);

}

} else

((ScrollingWidget) titlePan.getComponent(1))

.getTextAreaInstance().setText(text);

}

}

/**

* Shows the Top Level State

*/

public void showTopLevelState() {

setTitle(0, "Commands");

if (getCompIndex("topLevelHelp") == -1)

container.add(contents.getTopLevelStateTable());

if (!(getCompIndex("buttonsPanel") >= 0))

addButtons();

setCompVisible("topLevelHelp", true);

deleteComponent("paramsTables");

setTitleVisible("Title0", true);

deleteComponent("Title1");

deleteComponent("Title2");

setButtonVisible("back", false);

validate();

repaint();

}

/**

* Shows the Command State for the selected command

*

* @param command

* command selected

www.manaraa.com

166 Chapter G. Some Source Code of “Star” Implementation

*/

public void showCommandState(IdfCommand command) {

String commandGrp = "";

try {

commandGrp = idfAnalyzer.getCommandGroup(command.getCommandName())

.getLabel();

} catch (Exception e) {

}

setTitle(1, commandGrp + " \u2192 " + command.getLabel());

setMultiLineText("Title1", command.getMultiLineHelp(), "");

JPanel questionPanel = new JPanel();

questionPanel.setLayout(new BorderLayout());

JLabel titleLabel = new JLabel("Questions that might be asked:");

titleLabel.setFont(new Font(null, Font.PLAIN, 14));

questionPanel.setBackground(new Color(240, 240, 240));

questionPanel.setName("questionsHelp");

questionPanel.add(titleLabel, BorderLayout.NORTH);

questionPanel.add(contents.getCommandStateTableQues(command));

if (getCompIndex("paramsTables") == -1) {

splitter = new JSplitPane();

splitter.setDividerSize(5);

splitter.setOneTouchExpandable(true);

splitter.setOrientation(JSplitPane.VERTICAL_SPLIT);

splitter.setDividerLocation(250);

splitter.setName("paramsTables");

splitter.setLeftComponent(contents

.getCommandStateTableParams(command));

splitter.setRightComponent(questionPanel);

container.add(splitter);

}

deleteComponent("topLevelHelp");

setCompVisible("paramsTables", true);

deleteComponent("Title0");

setTitleVisible("Title1", true);

deleteComponent("Title2");

setButtonVisible("back", true);

validate();

repaint();

}

www.manaraa.com

G.4. The HelpBox class 167

/**

* Shows the Parameter State for the selected parameter

*

* @param command

* current command

* @param param

* selected parameter

* @param isQuestion

* true, if param is a Question; false, if param is a Parameter

*/

public void showParameterState(IdfCommand command,

IdfParameter param, boolean isQuestion) {

String commandGrp = "";

commandGrp = idfAnalyzer.getCommandGroup(command.getCommandName())

.getLabel();

setTitle(2, commandGrp + " \u2192 " + command.getLabel());

if (!isQuestion)

setMultiLineText("Title2", param.getMultiLineHelp(),

"Parameter: " + param.getLabel());

else

setMultiLineText("Title2", param.getMultiLineHelp(),

"Question: " + param.getLabel());

deleteComponent("topLevelHelp");

deleteComponent("paramsTables");

deleteComponent("Title0");

deleteComponent("Title1");

setTitleVisible("Title2", true);

setButtonVisible("back", true);

validate();

repaint();

}

/**

* Gets the table of commands displayed in the Top Level State

*

* @return the table object

*/

public TableWidget getTopLevelTable() {

int compIndex = getCompIndex("topLevelHelp");

www.manaraa.com

168 Chapter G. Some Source Code of “Star” Implementation

if (compIndex >= 0) {

return ((ScrollingWidget) container.getComponent(compIndex))

.getTableWidgetInstance();

}

return null;

}

/**

* Gets the table of parameters displayed in the Command State

*

* @return the table object

*/

public TableWidget getParamsTable() {

int compIndex = getCompIndex(splitter, "paramsHelp");

if (compIndex >= 0) {

return ((ScrollingWidget) splitter.getComponent(compIndex))

.getTableWidgetInstance();

}

return null;

}

/**

* Gets the table of questions displayed in the Command State

*

* @return the table object

*/

public TableWidget getQuestionsTable() {

int compIndex = getCompIndex(splitter, "questionsHelp");

if (compIndex >= 0) {

JPanel quesPanel = (JPanel) splitter.getComponent(compIndex);

return ((ScrollingWidget) quesPanel.getComponent(1))

.getTableWidgetInstance();

}

return null;

}

/**

* Gets the selected row index from the commands table in the

* Top Level State

*

* @return the index of the selected row

*/

public int getTopLevelTableSelectedRow() {

TableWidget table = getTopLevelTable();

if (table != null)

www.manaraa.com

G.4. The HelpBox class 169

return table.getSelectedRow();

else

return -1;

}

/**

* Gets the selected row index from the parameters table

* in the Command State

*

* @return the index of the selected row

*/

public int getParamsTableSelectedRow() {

TableWidget table = getParamsTable();

if (table != null)

return table.getSelectedRow();

else

return -1;

}

/**

* Gets the selected row index from the questions table

* in the Command State

*

* @return the index of the selected row

*/

public int getQuestionsTableSelectedRow() {

TableWidget table = getQuestionsTable();

if (table != null)

return table.getSelectedRow();

else

return -1;

}

// Deletes the specified component from the main container

private void deleteComponent(String name) {

int compIndex = getCompIndex(name);

if (compIndex >= 0) {

container.remove(compIndex);

}

}

// Makes the specified component to be visible or not visible

private void setCompVisible(String name, boolean isVisible) {

int compIndex = getCompIndex(name);

if (compIndex >= 0) {

www.manaraa.com

170 Chapter G. Some Source Code of “Star” Implementation

container.getComponent(compIndex).setVisible(isVisible);

}

}

// Makes the specified button to be visible or not visible

private void setButtonVisible(String name, boolean isVisible) {

int compIndex = getCompIndex("buttonsPanel");

if (compIndex >= 0) {

((JPanel) container.getComponent(compIndex)).getComponent(0)

.setVisible(isVisible);

}

}

// Makes the title visible or not visible

private void setTitleVisible(String name, boolean isVisible) {

int compIndex = getCompIndex(name);

if (compIndex >= 0) {

((JPanel) container.getComponent(compIndex))

.setVisible(isVisible);

}

}

// Get the index of the specified component in the main container

private int getCompIndex(String name) {

return WidgetAnalyzer.getWidgetIndex(

(JComponent) container, name);

}

// Get the index of the specified component in a particular

//container

private int getCompIndex(JComponent comp, String name) {

return WidgetAnalyzer.getWidgetIndex(comp, name);

}

// Adds buttons to the main container

private void addButtons() {

JPanel buttonsPanel = new JPanel();

buttonsPanel.setBorder(new EmptyBorder(10, 10, 5, 10));

buttonsPanel

.setLayout(new BoxLayout(buttonsPanel, BoxLayout.LINE_AXIS));

buttonsPanel.setName("buttonsPanel");

HelpBackButton backButton = new HelpBackButton(_cc);

backButton.setVisible(false);

www.manaraa.com

G.4. The HelpBox class 171

buttonsPanel.add(backButton);

HelpOKButton okButton = new HelpOKButton(_cc);

buttonsPanel.add(Box.createHorizontalGlue());

buttonsPanel.add(okButton);

container.add(buttonsPanel, BorderLayout.SOUTH);

}

}

www.manaraa.com

Appendix H

App Engine of the Temperature Converter
App

/*

* Application Engine of the Temperature Converter App

*

* TemperatureConverter.java

*/

import java.text.DecimalFormat;

import johar.gem.Gem;

public class TemperatureConverter {

//Initialization Method displays a Welcome message to the user

public void initTemperatureConverter(Gem gem){

String message = "Welcome to the Temperature Converter App."

+ "\nConversion from Celsius to Fahrenheit, and "

+ "vice-versa, just got easier!";

gem.showText(message, 2000);

gem.showText("Ready", 1000);

}

//Method to convert Celsius to Fahrenheit

public void celsiusToFahrenheit(Gem gem){

double celsiusTemp =

gem.getFloatParameter("celsius");

double fahrenheitTemp = convertToFahrenheit(celsiusTemp);

fahrenheitTemp = Double.parseDouble(

new DecimalFormat("0.0").format(fahrenheitTemp)

);

String outputMessage = "Temperature in Celsius: "

172

www.manaraa.com

173

+ celsiusTemp + "\n"

+ "Temperature in Fahrenheit: " + fahrenheitTemp;

gem.showText(outputMessage, 2000);

}

//Method to convert Fahrenheit to Celsius

public void fahrenheitToCelsius(Gem gem){

double fahrenheitTemp =

gem.getFloatParameter("fahrenheit");

double celsiusTemp = convertToCelsius(fahrenheitTemp);

celsiusTemp = Double.parseDouble(

new DecimalFormat("0.0").format(celsiusTemp)

);

String outputMessage = "Temperature in Fahrenheit: "

+ fahrenheitTemp + "\n"

+ "Temperature in Celsius: " + celsiusTemp;

gem.showText(outputMessage, 2000);

}

//Actual Fahrenheit to Celsius conversion is done here

private double convertToFahrenheit(double celsiusTemp){

double fahrenheitTemp = (celsiusTemp * (9.0/5.0)) + 32.0;

return fahrenheitTemp;

}

//Actual Fahrenheit to Celsius conversion is done here

private double convertToCelsius(double fahrenheitTemp){

double celsiusTemp = (fahrenheitTemp - 32.0) * (5.0/9.0);

return celsiusTemp;

}

//Method is called when user expresses intent to exit the app

public void exitApp(Gem gem){

}

//Method to determine whether to ask the user to confirm

//his/her intent to exit the app

public boolean confirmAppExit(Gem gem){

return true;

}

//Method to confirm whether to exit the app or not

public boolean appShouldQuit(Gem gem){

boolean questionResponse =

gem.getBooleanParameter("confirmExit");

www.manaraa.com

174 Chapter H. App Engine of the Temperature Converter App

if (questionResponse)

return true;

else

return false;

}

}

www.manaraa.com

Appendix I

Interface Description File (IDF) of the
Appointment Calendar App

Application = IdesOfJohar

ApplicationEngine = IdesOfJohar

IdfVersion = "1.0"

InitializationMethod = initIdesOfJohar

Table weeks = {

Browsable = yes

DefaultHeading = "Weeks"

DefaultColumnNames = "Sun|Mon|Tue|Wed|Thu|Fri|Sat"

}

Table days = {

Browsable = yes

DefaultHeading = "Days"

DefaultColumnNames = "Date|Number of Appointments"

}

Table appointments = {

Browsable = yes

DefaultHeading = "Appointments"

DefaultColumnNames = "Time|Description"

}

CommandGroup appointment = {

Member = addAppointment

Member = cancel

Member = exit

}

175

www.manaraa.com

176 Chapter I. Interface Description File (IDF) of the Appointment Calendar App

CommandGroup previous = {

Member = previousMonth

Member = previousWeek

Member = previousDay

}

CommandGroup next = {

Member = nextMonth

Member = nextWeek

Member = nextDay

}

CommandGroup goTo = {

Member = goToSelectedWeek

Member = goToSelectedDay

Member = goToDate

}

Command addAppointment = {

Label = "Add Appointment"

BriefHelp = "Add an appointment"

MultiLineHelp = "Add an appointment on the current day"

OneLineHelp = "Add an appointment on the current day"

Parameter time = {

Type = timeOfDay

DefaultValue = "9:00 am"

BriefHelp = "Time of the appointment"

MultiLineHelp = {{

The time of the appointment. The format is hh:mm am.

}}

OneLineHelp = "Time of the appointment"

}

Parameter description = {

Type = text

MaxNumberOfChars = 240

MaxNumberOfLines = 3

BriefHelp = "Text description"

MultiLineHelp = "A description of the appointment in text format."

OneLineHelp = "Text description of the appointment"

}

Parameter numReps = {

www.manaraa.com

177

Type = int

DefaultValue = 1

Label = "Number of repetitions"

MinValue = 1

BriefHelp = "Number of repetitions"

MultiLineHelp = {{

The number of repetitions for the appointment, to be

used with the ‘Repeat Every’ parameter. For example,

2 daily repetitions will add the appointment twice, for

two consecutive days.

}}

OneLineHelp = "Number of repetitions of the appointment"

}

Parameter repeatEvery = {

Type = choice

Choices = "day|week|month"

DefaultValue = day

BriefHelp = "Repetition period"

MultiLineHelp = {{

The period of repetition of the appointment, which can be

‘day’, ‘week’ or ‘month’. For example, 3 repetitions with

period ‘day’ will add the appointment for 3 consecutive

days; 3 repetitions with period ‘week’ will add the

appointment for 3 consecutive weeks on the same day of

the week.

}}

OneLineHelp = "Period of repetition of the appointment"

}

}

Command cancel = {

Label = "Cancel Appointment"

BriefHelp = "Cancel appointment"

OneLineHelp = "Cancel the selected appointment"

MultiLineHelp = {{

Cancel the appointment that is selected from the

appointment table.

}}

Parameter appt = {

Type = tableEntry

SourceTable = appointments

BriefHelp = "Selected appointment"

MultiLineHelp = {{

www.manaraa.com

178 Chapter I. Interface Description File (IDF) of the Appointment Calendar App

The selected row of the appointment table for cancellation.

}}

OneLineHelp = "The appointment to be cancelled"

}

}

Command previousMonth = {

BriefHelp = "Go to previous month"

MultiLineHelp = "Go to previous month"

OneLineHelp = "Go to previous month"

}

Command nextMonth = {

BriefHelp = "Go to next month"

MultiLineHelp = "Go to next month"

OneLineHelp = "Go to next month"

}

Command previousWeek = {

BriefHelp = "Go to previous week"

MultiLineHelp = "Go to previous week"

OneLineHelp = "Go to previous week"

}

Command nextWeek = {

BriefHelp = "Go to next week"

MultiLineHelp = "Go to next week"

OneLineHelp = "Go to next week"

}

Command previousDay = {

BriefHelp = "Go to previous day"

MultiLineHelp = "Go to previous day"

OneLineHelp = "Go to previous day"

}

Command nextDay = {

BriefHelp = "Go to next day"

MultiLineHelp = "Go to next day"

OneLineHelp = "Go to next day"

}

Command goToSelectedWeek = {

BriefHelp = "Go to selected week"

MultiLineHelp = "Go to the week selected from the Weeks table."

www.manaraa.com

179

OneLineHelp = "Go to the week selected from the Weeks table"

Parameter week = {

Type = tableEntry

SourceTable = weeks

BriefHelp = "Selected week"

MultiLineHelp = "The week to go to, selected from the Weeks table."

OneLineHelp = "The week to go to"

}

}

Command goToSelectedDay = {

BriefHelp = "Go to selected day"

MultiLineHelp = "Go to the day selected from the Days table."

OneLineHelp = "Go to the day selected from the Days table"

Parameter day = {

Type = tableEntry

SourceTable = days

BriefHelp = "Selected day"

MultiLineHelp = "The day to go to, selected from the Days table."

OneLineHelp = "The day to go to"

}

}

Command goToDate = {

BriefHelp = "Go to specific date"

MultiLineHelp = "Jump to an arbitrary date."

OneLineHelp = "Go to a specific date"

Parameter dateToGoTo = {

Type = date

BriefHelp = "Date to go to"

MultiLineHelp = "Date to go to."

OneLineHelp = "Date to go to"

}

}

Command exit = {

QuitAfter = yes

}

www.manaraa.com

Appendix J

“StarX” Interface Interpreter:
Requirements Specification of the StarX
GUI

StarX is an eXtended version of the Star interface interpreter with extra functionality for
keyboard-only interactions. Thus, if a user prefers to use only the keyboard (without the mouse)
to interact with interface components, StarX interface interpreter will fully support the user
by activating keyboard shortcuts (see below). StarX also supports users that prefer using both
keyboard and mouse to interact with interface components, but the keyboard shortcuts (defined
in this document) will not be active.

This document extends the requirements for Star (see Star GUI Specification document
in Appendix E). Note that all the keyboard shortcuts defined in this document are not case-
sensitive.

J.1 Main Panel

All the requirements (except 1 and 14) under under the section labeled “The Main Panel”
in the Star GUI Specification document are applicable under this section, in addition to the
following:

(1) At the top is the Menu Bar, which shows one menu for each command group in the
application, and one menu named “StarX” (for services provided by the StarX
interpreter for all Johar applications). The non-StarX menus are referred to as
application menus.

(2) On the “StarX” menu, there are three menu items: Help, Enable Keyboard-Only

Interaction, and Show Hotkeys Pop-Up Table.

180

www.manaraa.com

J.1. Main Panel 181

(3) The supported keyboard shortcuts for the main panel and their respective functions are
specified in the following sub-sections.

(4) Whenever either the Menu Bar, Text Display Area, or Table Area receives focus, a red
border is displayed around it to serve as a visual cue for the user.

J.1.1 The Menu Bar

Table J.1 shows the keyboard shortcuts required for interacting with the Menu Bar.

Keyboard Shortcut Function
Alt + M Selects the first menu on the menu bar. (Note that Alt + M

means the user holds down Alt key while pressing M).

left arrow or Z Selects the preceding menu.

right arrow or X Selects the next or succeeding menu.

down arrow Moves down to the next command of a selected menu.

up arrow Moves up to the previous command of a selected menu

S or Return Selects a command.

Table J.1: Keyboard shortcuts for the Menu Bar

J.1.2 The Text Display Area

Table J.2 shows the keyboard shortcuts required for interacting with the Text Display Area.

Keyboard Shortcut Function
T Causes the Text Display Area to receive focus.

down arrow Scrolls down the Text Display Area.

up arrow Scrolls up the Text Display Area.

Table J.2: Keyboard shortcuts for the Text Display Area

J.1.3 The Table Area

Table J.3 shows the keyboard shortcuts required for interacting with the Table Area.

Keyboard Shortcut Function
H Causes the Table Area to receive focus, and then selects the

top table.

www.manaraa.com

182Chapter J. “StarX” Interface Interpreter: Requirements Specification of the StarX GUI

F Selects the first row of the current table.

C Selects the current row of the current table.

L Selects the last row of the current table.

D Deselects the current row of the current table.

down arrow Moves down to the next row without selecting it.

up arrow Moves up to the previous row without selecting it.

left arrow or Z Selects the preceding table.

right arrow or X Selects the next or succeeding table.

Table J.3: Keyboard shortcuts for the Table Area

J.2 The Command Dialog Box

Requirements 1 to 15 under the section labeled “The Command Dialog Box” in the Star GUI
Specification document are applicable under this section, in addition to the keyboard shortcuts
in Table J.4, J.5, and J.6. Note that Control + <key> means the user holds down Control while
pressing the key.

Keyboard Shortcut Function
Control + Q Presses the Cancel button.

Control + P Presses the Previous button.

Control + N Presses the Next button.

Control + K Presses the OK button.

Table J.4: Keyboard shortcut for the Cancel, Previous, Next and OK buttons

J.2.1 Parameter Section of the Command Dialog Box

Requirements 1 to 5 under the section labeled “Parameter Section of the Command Dialog
Box” in the Star GUI Specification document are applicable under this section, in addition to
the keyboard shortcuts in Table J.5.

Keyboard Shortcut Function

www.manaraa.com

J.2. The Command Dialog Box 183

F2

• Pressing this key for the first time causes the widget
for the topmost repetition of the current stage’s 1st
parameter section to receive focus.

• Continuous pressing of the key causes the widget for
the topmost repetition of the next parameter section
to receive focus.

• If the current parameter section is the last parameter
section of the stage, pressing the key causes the
widget for the topmost repetition of the 1st
parameter section to receive focus again.

F3 Transfers focus to the widget for the next repetition of the
current parameter section.

F4 Transfers focus to the widget for the previous repetition of
the current parameter section.

Table J.5: Keyboard shortcuts for the Parameter Section

Whenever the widget for the topmost repetition of a stage’s parameter section receives
focus, a red border is shown around the current repetition section to serve as a visual cue for
the user.

J.2.2 Repetition Section of the Parameter Section

Requirements 1 to 5 under the section labeled “Repetition Section of the Parameter Section”
in the Star GUI Specification document are applicable under this section, in addition to the
keyboard shortcuts in Table J.6. Note that Control + <key>means the user holds down Control

while pressing the key.

Keyboard Shortcut Function
Control + A Presses the “Add another” button of the current parameter

section.

Control + X Presses the Delete button of the current repetition.

Control + U Presses the Move Up button of the current repetition.

www.manaraa.com

184Chapter J. “StarX” Interface Interpreter: Requirements Specification of the StarX GUI

Control + D Presses the Move Down button of the current repetition.

Table J.6: Keyboard shortcuts for buttons in the Repetition Section of a Parameter Section

Refer to Section J.5 below for details on the keyboard shortcuts required for interacting
with certain widgets which the user can use to select the value of a repetition (depending on
the parameter type).

J.3 Question Dialog Box

Requirements 1 to 4 under under the section labeled “Question Dialog Box” in the Star GUI
Specification document are applicable under this section, in addition to the keyboard shortcuts
in Table J.7. Note that Control + <key> means the user holds down Control while pressing the
key.

Keyboard Shortcut Function
F2 Causes the parameter widget to receive focus.

Control + Q Presses the Cancel button.

Control + K Presses the OK button.

Table J.7: Keyboard shortcuts for the Question Dialog Box

When the parameter widget receives focus, a red border is displayed around it to serve as
visual cue for the user.

Refer to Section J.5 below for details on the keyboard shortcuts required for interacting
with certain widgets which the user can use to select the value of a question (depending on the
question type).

J.4 Help Box

The Help Box has three states (see the section labeled “Help Box” in the Star GUI
Specification document), and each of the states (except the Top-Level state which has the OK
button only) has both the Back and OK buttons. The keyboard shortcuts in Table J.8 below are
required for pressing the two buttons. Note that Control + <key> means the user holds down
Control while pressing the key.

www.manaraa.com

J.4. Help Box 185

Keyboard Shortcut Function
Control + B Presses the Back button.

Control + K Presses the OK button.

Table J.8: Keyboard shortcuts for the Help Box buttons

J.4.1 Top-Level State

Requirements 1 to 5 under the subsection labeled “Top-Level State” in the Star GUI
Specification document are applicable under this section, in addition to the keyboard shortcuts
in Table J.9.

Keyboard Shortcut Function
C Causes the Commands table to receive focus.

F Clicks the command label in the first row of the table.

S Clicks the command label in the current row of the table.

L Clicks the command label in the last row of the table.

down arrow Moves down to the command label of the next row without
clicking it.

up arrow Moves up to the command label of the previous row
without clicking it.

Table J.9: Keyboard shortcuts for the Top-Level State’s Commands table

Whenever the Commands table receives focus, a red border is shown around it to serve as
a visual cue for the user.

J.4.2 Command State

Requirements 1 to 10 under the subsection labeled “Command State” in the Star GUI
Specification document are applicable under this section, in addition to the keyboard shortcuts
in Table J.10, J.11, and J.12.

Keyboard Shortcut Function
T Causes the Text Area containing the MultiLineHelp for the

current command to receive focus.

down arrow Scrolls down the Text Area.

www.manaraa.com

186Chapter J. “StarX” Interface Interpreter: Requirements Specification of the StarX GUI

up arrow Scrolls up the Text Area.

Table J.10: Keyboard shortcuts for the Command State’s Text Area

Keyboard Shortcut Function
P Causes the Parameters table to receive focus.

F Clicks the parameter label in the first row of the table.

S Clicks the parameter label in the current row of the table.

L Clicks the parameter label in the last row of the table.

down arrow Moves down to the parameter label of the next row without
clicking it.

up arrow Moves up to the parameter label of the previous row
without clicking it.

Table J.11: Keyboard shortcuts for the Command State’s Parameters table

Keyboard Shortcut Function
Q Causes the Questions table to receive focus.

F Clicks the question label in the first row of the table.

S Clicks the question label in the current row of the table.

L Clicks the question label in the last row of the table.

down arrow Moves down to the question label of the next row without
clicking it.

up arrow Moves up to the question label of the previous row without
clicking it.

Table J.12: Keyboard shortcuts for the Command State’s Questions table

Whenever any widget in the Command State receives focus, a red border is shown around
that widget to serve as a visual cue for the user.

J.4.3 Parameter/Question State

Requirements 1 to 6 under the subsection labeled “Parameter/Question State” in the Star GUI
Specification document are applicable under this section, in addition to the keyboard shortcuts

www.manaraa.com

J.5. Keyboard Shortcuts for interacting with certainWidgets 187

in Table J.13.

Keyboard Shortcut Function
T Transfers focus to the Text Area containing the

MultiLineHelp for the current Parameter/Question.

down arrow Scrolls down the Text Area.

up arrow Scrolls up the Text Area.

Table J.13: Keyboard shortcuts for the Parameter/Question State’s Text Area

When the MultiLineHelp widget of the Parameter/Question state receives focus, a red
border surrounds it.

J.5 Keyboard Shortcuts for interacting with certain Widgets

The following subsections define the keyboard shortcuts required to interact with widgets to
be used in StarX for selecting (or typing in) values for each repetition of a parameter. Note
that the keyboard shortcuts defined below automatically become active when the corresponding
widgets receive focus.

J.5.1 Boolean Widget

This widget is used to select value for parameters (or questions) of type boolean. This widget
is a RadioButton with “Yes” and “No” options.

Keyboard Shortcut Function
Y Selects the Yes option.

N Selects the No option.

Table J.14: Keyboard shortcuts for the Boolean Widget

J.5.2 Choice Widget and TableEntry Widget

These widgets are used to select values for parameters (or questions) of type choice and
tableEntry (with a non-browsable SourceTable) respectively. Each of these widgets is a
ComboBox with a set of values.

Keyboard Shortcut Function

www.manaraa.com

188Chapter J. “StarX” Interface Interpreter: Requirements Specification of the StarX GUI

V Presses the drop-down arrow of the widget, thereby
making the values (currently in the widget) visible. If some
values are hidden in the current view, the arrow keys (see
below) can be used to view them.

S Sets the current value as the selected value.

down arrow Moves down to the next value in the widget.

up arrow Moves up to the previous value in the widget.

Table J.15: Keyboard shortcuts for the Choice/TableEntry Widget

J.5.3 Date Widget

This widget is used to select value for parameters (or questions) of type date. The widget
is a DatePicker that consists of a textfield that shows the date and a button for displaying a
calendar.

Keyboard Shortcut Function
F5 Pops up the calendar.

down arrow Selects the date of next or succeeding week.

up arrow Selects the date of preceding week.

left arrow Selects the date of preceding day.

right arrow Selects the date of next or succeeding day.

Enter or Return Confirms the selected date and shows it in the textfield.

Table J.16: Keyboard shortcuts for the Date Widget

J.5.4 File Widget

This widget is used to select value for parameters (or questions) of type file. The widget is a
FileChooser with a textfield and a “browse” button (for file selection).

Keyboard Shortcut Function
F5 Pops up the FileChooser Dialog Box.

Tab Used to move around the FileChooser Dialog Box, such as
moving from the Look In box to the Folder & File List box
or to the File Name box or to the File Type box, etc.

www.manaraa.com

J.5. Keyboard Shortcuts for interacting with certainWidgets 189

down arrow Selects the next file/folder.

up arrow Selects the previous file/folder.

left arrow Selects the file/folder to the left of the currently selected
file/folder.

right arrow Selects the file/folder to the right of the currently selected
file/folder.

Enter or Return If a folder is currently selected, pressing this key shows the
content of the folder. Otherwise, if a file is currently
selected, pressing this key confirms the selection and
displays the absolute file name in the textfield.

Table J.17: Keyboard shortcuts for the File Widget

J.5.5 Number Widget

This widget is used to enter value for parameters (or questions) of type int and float. This
widget is a formatted textfield that allows integers and floating-point (negative or
non-negative) values only. On most platforms, the insertion point becomes available inside the
widget whenever it receives focus. However, if the insertion point is not available when the
widget receives focus, pressing the keyboard shortcut below will show it.

Keyboard Shortcut Function
F6 Shows the insertion point in the widget, thereby making

data entry possible.

Table J.18: Keyboard shortcuts for the Number Widget

J.5.6 Text Widget

This widget is used to enter value for parameters (or questions) of type text. This widget is
a textfield that allows both single-line and multi-line texts. On most platforms, the insertion
point becomes available inside the widget whenever it receives focus. However, if the insertion
point is not available when the widget receives focus, pressing the keyboard shortcut below
will show it.

Keyboard Shortcut Function

www.manaraa.com

190Chapter J. “StarX” Interface Interpreter: Requirements Specification of the StarX GUI

F6 Shows the insertion point in the widget, thereby making
data entry possible.

Table J.19: Keyboard shortcuts for the Text Widget

J.5.7 Time Widget

This widget is used to select value for parameters (or questions) of type timeOfDay. The
widget is a spinner that shows the hour, minute, and AM/PM.

Keyboard Shortcut Function
left arrow Moves the insertion point to the left, and can be used to

position the insertion point in front of the hour or minute or
AM/PM.

right arrow Moves the insertion point to the right, and can be used to
position the insertion point in front of the hour or minute or
AM/PM.

down arrow If the insertion point is positioned in front of the hour or
minute, pressing this key decreases the hour or minute by
1. Otherwise, if the insertion point is positioned in front of
the AM/PM, pressing this key changes AM to PM or
vice-versa.

up arrow If the insertion point is positioned in front of the hour or
minute, pressing this key increases the hour or minute by 1.
Otherwise, if the insertion point is positioned in front of
the AM/PM, pressing this key changes AM to PM or
vice-versa.

Table J.20: Keyboard shortcuts for the Time Widget

J.5.8 The Message Dialog Box

The Message Dialog Box shows high-priority messages to the user. The dialog box has an OK

button only.

Keyboard Shortcut Function
Enter or Return Presses the OK button.

www.manaraa.com

J.5. Keyboard Shortcuts for interacting with certainWidgets 191

Table J.21: Keyboard shortcut for the Message Dialog Box

J.5.9 Hotkeys Pop-Up Table

This table informs the user about the keyboard shortcuts or hotkeys that are applicable to
various states of a user interface. Refer to the subsection labeled “The Hotkeys Pop-up Table”
in Chapter 5 (under the “The StarX GUI” section) for more information about this dynamic
table.

(1) The table is activated when the user selects Show Hotkeys Pop-up Table under the StarX

menu, and deactivated when the user selects the Hide Hotkeys Pop-up Table.

(2) If activated, the table is displayed automatically as a pop-up immediately the user focuses
on a section or launches a window in the user interface, and its content dynamically
changes as the user transfers focus to interface elements within the active section or
window.

(3) The table can be dismissed or hidden by pressing the ESC or Escape key on the keyboard.
Pressing F1 shows the table again.

www.manaraa.com

Appendix K

“Grupo” Interface Interpreter:
Requirements Specification

Grupo is a “batch mode” interface interpreter that accepts a text file, containing all the desired
commands and data, as input. Grupo reads each line of command from the input file, executes
the command against the application engine, and then writes output messages to the standard
output.

The syntax and semantics of Grupo commands allowed in an input file are discussed in the
following sections.

K.1 Commands in Grupo

(1) Commands, with their respective syntax, allowed in an input file are shown in Table K.1
below. Each of these commands occupies a separate line in the file.

(2) All command keywords must be in lowercase.

Command Syntax
browse browse <tablename>

help help <commandname | parametername>

help -b <commandname | parametername>

help -o <commandname | parametername>

help -m <commandname | parametername>

table table <tablename>

select select <rownumber>

deselect deselect <rownumber>

command command <commandname>

192

www.manaraa.com

K.1. Commands in Grupo 193

param param <parametername> <value>

ok ok

Table K.1: Grupo Commands

K.1.1 The browse command

The browse command displays the content of a browsable table to the user.

(1) Its syntax consists of the browse keyword followed by a space, and the name of the table
to display.

(2) The table with the specified name is one of the browsable tables in the IDF.

K.1.2 The help command

The help command displays the BriefHelp, OneLineHelp, or the MultiLineHelp of a Command
or Parameter to the user.

(1) A syntax of the help command consists of the help keyword followed by a space, an
option followed by a space, and the name of a Command or Parameter in the IDF.

(2) Another syntax of the help command consists of the help keyword followed by a space,
and the name of a Command or Parameter in the IDF.

(3) If an option is specified in the help command, it can be either -b (for BriefHelp), or -o
(for OneLineHelp) or -m (for MultiLineHelp).

(4) If an option is not specified in the help command, then the -o option is used.

K.1.3 The table command

The table command makes a table to be the current table.

(1) The syntax of the table command consists of the table keyword followed by a space,
and the table name.

(2) The table with the specified name is one of the tables in the IDF.

www.manaraa.com

194 Chapter K. “Grupo” Interface Interpreter: Requirements Specification

K.1.4 The select command

The select command selects a row in the current table.

(1) Its syntax consists of the select keyword followed by a space, and the row number to
select.

(2) The current table should have been set (see above) before issuing this command.

(3) The row number is a number n, where n ≥ 1. Thus, row number 1 represents the first
row, 2 represents the second row, 3 represents the third row, and so on.

(4) In order to select n rows from the current table, n select commands will be issued.

K.1.5 The deselect command

The deselect command deselects a previously-selected row in the current table.

(1) Its syntax consists of the deselect keyword followed by a space, and the row number to
deselect.

(2) The specified row should have been selected (see above) before deselecting it using this
command.

(3) The row number is a number n, where n ≥ 1.

(4) In order to deselect n selected rows in the current table, n deselect commands will be
issued.

K.1.6 The command command

Begins input of a command.

(1) Its syntax consists of the command keyword followed by a space, and the command
name.

(2) The command with the specified name is one of the application’s commands already
defined in the IDF.

(3) Each input of the command is specified via the param command (see below).

(4) After the last input of the command has been specified, the ok command (see below) is
issued to signify the end of input.

www.manaraa.com

K.2. OutputMessage Prefixes 195

K.1.7 The param command

The param command sets the value of a parameter.

(1) Its syntax consists of the param keyword followed by a space, the name of the parameter
followed by a space, and the parameter value.

(2) If the parameter value is a string that contains one or more spaces, then it should be
enclosed in double quotation marks.

(3) The parameter with the specified name is one of the parameters of the command already
defined using the command command (see above).

(4) The param command is always placed between the command command and the ok
command.

(5) In order to set value for n repetitions of a parameter, n param commands will be issued
to set values for the repetitions.

K.1.8 The ok command

The ok command signifies the end of input of a command.

(1) Its syntax consists of the ok keyword only.

(2) It is always placed after the command command and should be after the param command
(if any) on a separate line.

(3) An ok command is attached to the preceding and most recent command command only.

K.2 Output Message Prefixes

See Table K.2. All output messages shown to the user are prepended with the prefixes that fit
their purpose. Each of the prefixes is immediately followed by a colon and a space (e.g. ERR:

invalid parameter name) to improve readability. Note that all output messages are displayed
on the Standard Output.

Prefix Short Meaning Purpose
COM Command Input Informs the user that the output message is an

input of a command.

www.manaraa.com

196 Chapter K. “Grupo” Interface Interpreter: Requirements Specification

OUT showText Output Informs the user that the output message is the
output of showText.

TAB Table Output Informs the user that the output message is the
content of a particular table.

ERR Error Message Informs the user that the output message is an
error that occurred during execution.

REM Remark/Comment Informs the user that the output message is a
comment or remark.

HLP Help Informs the user that the output message is the
help information he/she requested.

Table K.2: Prefixes of output messages

K.3 The Input File

Commands are entered into a text file.

(1) The file name is made up of letters and/or digits and/or the underscore.

(2) The file name has the “.gpo” extension.

(3) A line does not contain more than one command.

(4) A line may contain only the whitespace.

(5) A line where the first non-whitespace is “//” is interpreted as a comment.

K.3.1 A Sample Input File

See the Sample Input File in Chapter 5 under the “Grupo Interface Interpreter” section.

www.manaraa.com

Appendix L

“Grupo” Interface Interpreter:
Requirements Specification (Behaviour)

L.1 Top-Level Behaviour

(1) Read the IDF.

(2) Create the GemSetting and validate it.

(3) Call the application engine’s initialization method.

L.2 Running Commands in an Input File

When the user launches Grupo:

(1) If an input file name with “.gpo” extension is specified by the user,

(i) Collect the file name in a variable fileName.

(ii) If fileName has a relative path, then make it absolute. (Idea: fileName = <path

to current/working directory> + fileName).

(iii) If the input file referenced by fileName exists,

(a) Set a String field currentTable to the empty string. (Rationale: this will be
for storing the name of the current table).

(b) Instantiate a Map field tablesMap. (Rationale: this will be for capturing each
currentTable along with a list of selected rows in that table. Thus, each key
in tablesMap is a string representing a table name, and the corresponding
value is a List containing the row numbers of selected rows. In Java,

197

www.manaraa.com

198 Chapter L. “Grupo” Interface Interpreter: Requirements Specification (Behaviour)

tablesMap can be a hash map of the form HashMap<String,

List<Integer>>).

(c) For each line of text in the input file, perform the “Parse-and-Execute
Command” procedure with the line of text as parameter.

(iv) Otherwise, show an error message informing the user that the specified input file
does not exist.

(2) Otherwise, show an error message informing the user of missing input file; afterwards,
call System.exit(0) to exit Grupo.

L.3 The Parse-and-Execute Command Procedure

The Parse-and-Execute Command procedure takes a parameter: the command line (String
commandLine).

(1) Remove any whitespace before and after commandLine.

(2) If commandLine is empty, then Return.

(3) Otherwise, if commandLine starts with “//”, then show the text after the “//” to the user,
and Return.

(4) Otherwise,

(i) Tokenize commandLine.

(a) If the first token is table,

(i) If the second token (i.e. the table name) exists in the IDF, then assign
the second token to currentTable. Otherwise, inform the user (via an
error message) that the specified table name does not exist in the IDF, and
Return.

(ii) If currentTable is not in tablesMap, then put currentTable and a
new list in tablesMap.

(iii) Return.

(b) Otherwise, if the first token is select,

(i) If currentTable is in tablesMap,

(a) Call gemSetting.rowIsFilled to determine whether the specified
row number (i.e. second token) is filled in the current table.
(Remember that row number in GemSetting is zero-based).

www.manaraa.com

L.3. The Parse-and-Execute Command Procedure 199

(b) If the row is filled, then add the second token to the list of row numbers
associated with currentTable in tablesMap.

(c) Otherwise, show an error message to the user stating that the specified
row is not filled. The error message should also contain the line number
that triggers the error.

(d) Return.

(ii) Otherwise, show an error message to the user stating that no current table
exists. The error message should also contain the line number that triggers
the error.

(iii) Return.

(c) Otherwise, if the first token is deselect,

(i) If currentTable is in tablesMap, then remove the second token from
the list of row numbers associated with currentTable in tablesMap.

(ii) Otherwise, show an error message to the user stating that no current table
exists. The error message should also contain the line number that triggers
the error.

(iii) Return.

(d) Otherwise, if the first token is command,

(i) If the second token (i.e. the command name) exists in the IDF and a call
to gemSetting.methodIsActive returns true, then

(a) Assign the second token to a String field currentCommand.

(b) Call gemSetting.selectCurrentCommand(currentCommand)

(ii) Otherwise, show appropriate error message to the user.

(iii) Return.

(e) Otherwise, if the first token is param,

(i) If the second token (i.e. parameter name) is not in the IDF, show an error
message to the user, stating the invalid parameter and the corresponding
line number; and Return.

(ii) Show commandLine to the user.

(iii) Remove any double quotation marks that enclose the parameter value (i.e.
the third token).

(iv) Convert the parameter value to conform to the type equivalent to the
parameter’s type in the IDF. (See the table in the Interface Interpreter
Specification document available in Appendix B).

www.manaraa.com

200 Chapter L. “Grupo” Interface Interpreter: Requirements Specification (Behaviour)

• Show any error(s) that occurred during conversion to the user, and
Return.

(v) Validate the parameter value, as indicated in requirements 26-51 of the
Interface Interpreter Specification document.

• If the value does not pass validation, show an error message to the user,
and Return. (The error message must contain the line number, parameter
name, and the value that failed validation).

(vi) Call gemSetting.getParameterRepCount with the second token as the
parameter. Store the return value in a variable repNumber. (Rationale:
Since the repetition number is required when loading a value into the Gem,
then the number returned by getParameterRepCount can be used as the
repetition number for that value.).

• If GemException is thrown, then set repNumber to be 0. (Rationale:
Since the parameter does not exist in the Gem, then use 0 as the
repetition number.).

(vii) Load the parameter value into the Gem with repNumber as the repetition
number.

(viii) Return.

(f) Otherwise, if the first token is ok,

• Call the “Execute App Command” procedure with parameter
currentCommand.

(g) Otherwise, if the first token is browse,

(i) Collect the entire line in a variable browseCmdString, removing any
whitespace before and after the string.

(ii) Call the “Execute Browse Command” procedure with parameter
browseCmdString.

(iii) Return.

(h) Otherwise, if the first token is help,

(i) Collect the entire line in a variable helpCmdString, removing any
whitespace before and after the string.

(ii) Call the “Execute Help Command” procedure with parameter
helpCmdString.

(iii) Return.

www.manaraa.com

L.4. Execute App Command Procedure 201

L.4 Execute App Command Procedure

The Execute App Command procedure takes one parameter: command name (String
commandName).

(1) For each stage i in the command,

(i) Call gemSetting.selectCurrentStage(i)

(ii) For each parameter p in stage i,

(a) If p is a tableEntry parameter,

(i) Get its SourceTable from the IDF

(ii) For each key k in tablesMap,

• If k is equal to SourceTable, then

(a) If the size of the list associated with k is less than MinNumberOfReps
of p, then show an error message to the user stating that the table
selection for p is incomplete, and Return.

(b) Otherwise, load each element (i.e. row number) in the list associated
with k into the Gem. Remember to subtract 1 from each element
before loading it into the Gem. (Rationale: Since row number in
GemSetting is zero-based, it is imperative to subtract 1 from each
row number before loading it into the Gem).

(b) Otherwise,

(i) Call gemSetting.getParameterRepCount(p) and assign its return
value to a variable currentNumberOfReps.

(ii) If currentNumberOfReps is less than MinNumberOfReps of p,

(a) If p has a DefaultValue, then fill up the remaining repetitions with
DefaultValue up to MinNumberOfReps.

(b) Otherwise, if p has a DefaultValueMethod, call it and use the return
value to fill up the remaining repetitions up to MinNumberOfReps.

(c) Otherwise, show an error message to the user stating the parameter with
incomplete repetition, and Return.

(iii) Call the ParameterCheckMethod for stage i (if any),

• If the ParameterCheckMethod returns an error message, show it to the user,
and Return.

(2) Call the CommandMethod of the command.

www.manaraa.com

202 Chapter L. “Grupo” Interface Interpreter: Requirements Specification (Behaviour)

(3) For each table t in the IDF,

(i) Determine if t has changed by calling gemSetting.tableIsUpdated(t).

(ii) If t has changed, then show its contents (with header and column name(s)) to the
user.

(4) Call gemSetting.getTopTable to retrieve the current top table, and display “Current
Top Table: ” followed by the name of the top table to the user.

(5) Determine whether the application should quit, by checking the QuitAfter attribute
and/or calling the QuitAfterIfMethod of the command.

(i) If the application should quit, then call the “Execute Exit App” procedure.

(ii) Return.

L.5 Execute Browse Command Procedure

The Execute Browse Command procedure takes one parameter: the browse command string
(String browseCommandString).

(1) Tokenize browseCommandString.

(2) If the number of tokens is 2,

(i) If the second token (i.e. the table name) is a browsable table in the IDF and has
content in the Gem, then show its contents (with header and column name(s)) to
the user.

(ii) Otherwise, show appropriate error message to the user.

(iii) Return.

(3) Otherwise, show an error message informing the user that the browse command is
wrongly used. The error message should further guide the user by displaying the correct
syntax of the browse command.

L.6 Execute Help Command Procedure

The Execute Help Command procedure takes one parameter: the help command string
(String helpCommandString).

www.manaraa.com

L.7. Execute Exit App Procedure 203

(1) Tokenize helpCommandString.

(2) If the number of tokens is 2,

(i) If the second token (i.e. the Command or Parameter name) exists in the IDF, then
show its OneLineHelp to the user.

(ii) Otherwise, show an error message informing the user that the specified Command
or Parameter name does not exist in the IDF.

(iii) Return.

(3) Otherwise, if the number of tokens is 3,

(i) If the second token is -b and the third token (i.e. the Command or Parameter name)
exists in the IDF, then show the BriefHelp of the specified Command or Parameter
to the user.

(ii) Otherwise, if the second token is -o and the third token (i.e. the Command or
Parameter name) exists in the IDF, then show the OneLineHelp of the specified
Command or Parameter to the user.

(iii) Otherwise, if the second token is -m and the third token (i.e. the Command or
Parameter name) exists in the IDF, then show the MultiLineHelp of the specified
Command or Parameter to the user.

(iv) Otherwise, show appropriate error message to the user.

(v) Return.

(4) Otherwise, show an error message informing the user that the help command is wrongly
used. The error message should further guide the user by displaying the correct syntax
of the help command.

L.7 Execute Exit App Procedure

(1) Show “Exited ”, followed by the camel-case translation of the Application name, to the
user. For example, Exited Temperature Converter.

(2) Call System.exit(0).

www.manaraa.com

204 Chapter L. “Grupo” Interface Interpreter: Requirements Specification (Behaviour)

L.8 The ShowTextHandler

The ShowTextHandler for Grupo handles the display of text on the Standard Output
(System.out), irrespective of the prominence of the text.

www.manaraa.com

Curriculum Vitae

Name: Oladapo Oyebode

Post-Secondary Western University
Education and London, Ontario, Canada
Degrees: 2012–2013 M.Sc. in Computer Science

University of Ibadan, Nigeria
2005–2008 B.Sc. in Computer Science

Federal Polytechnic Ede, Nigeria
2002–2004 National Diploma in Computer Science

Honours and Faculty of Science Dean’s Roll of Honour (for Academic Excellence)
Awards: University of Ibadan, Nigeria

2006 and 2007

Related Work Teaching Assistant and Research Assistant
Experience: Western University

2012–2013

Software Developer at Sterling Bank Plc, Lagos, Nigeria
2010–2012

IT Solutions Developer at HeteroGenius Systems Limited, Nigeria
2010

205

	Western University
	Scholarship@Western
	December 2013

	Redesign of Johar: a framework for developing accessible applications
	Oladapo Oyebode
	Recommended Citation

	Redesign of Johar: a framework for developing accessible applications

